证明由0及1构成的序列的集合,其基数是[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]。
举一反三
- 证明下面的题:[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]中的无理数的集合,其基数是[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]。
- 证明:[tex=2.0x1.357]AUoDsQBgen8/+sL3yGoyYA==[/tex]上的全体无理数作成的集合其基数为[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]
- 证明由[tex=2.286x1.357]ay6tf6ymcaVAoPQIbN6WLA==[/tex]开区间中的实数[tex=0.571x0.786]ZSLOI4fiO1oAbVC5M8IVkA==[/tex]组成的实数序列的全体作成一基数为[tex=0.5x0.786]rMb348iL2lrN33CF4NFzaw==[/tex]的集合.进而证明由任何实数组成的实数序列的全体所作成的集合的基数也是[tex=0.5x0.786]rMb348iL2lrN33CF4NFzaw==[/tex].
- 证明[tex=1.143x1.214]99izTVkOg6z3Ylatn6B9Ww==[/tex]中的全体开集构成一基数为[tex=0.5x0.786]rMb348iL2lrN33CF4NFzaw==[/tex]的集合.从而[tex=1.143x1.214]99izTVkOg6z3Ylatn6B9Ww==[/tex]中全体闭集也构成一基数为[tex=0.5x0.786]rMb348iL2lrN33CF4NFzaw==[/tex]的集合.
- 构造从[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]到下面集合的一个双射函数以证明它们有基数[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]:[tex=2.214x1.357]mpyYBdP7k8056w1o+qOOxw==[/tex],这里[tex=2.357x1.071]QbU+vUJjuGTVI8qNJiB1oA==[/tex],[tex=2.857x1.214]KBtofXQJ0vaVjVO14O8Jlg==[/tex]。