设 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 为一切收敛数列所组成的空间,其中的线性运算与通常序列空间相同. 在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 中令 [tex=11.143x2.0]xoPqwMiGEElkv/9pVUDyZ/D5euUJ4wjGDcznEq617qGYsS6jCcGkwYjFkBbHZtgYyNglcorWQCbPOmgghFeANo9Tkaw2jrUcrvjZp34T8AM=[/tex], 证明 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 是可分的 [tex=3.429x1.0]hRlWsjFqxdxSbRSyuIRayg==[/tex] 空间.
举一反三
- 设 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 为一简单闭曲线,[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex]与[tex=1.786x1.357]q7S+DkUP+kHN4l0TDsnqnA==[/tex]在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]内部及[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]上解析,并且在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]上有 [tex=4.286x1.357]HmaFCIhDwqteOxrMRU/E3w==[/tex],那么在[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]内必有[tex=4.286x1.357]HmaFCIhDwqteOxrMRU/E3w==[/tex].
- 设[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]为一切收敛数列组成的集,线性居算与[tex=0.714x1.0]L9TPvyQjkYo3y73/S20pkw==[/tex]中的相同,在[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]中令[tex=5.643x2.143]mLxUGnqzMuvKhdUenDOBy2TgiadnyNxaoT9kR4eXgf4QHyrCPeEICY3Hppw88c9+[/tex],其中[tex=11.071x1.357]1TcKQ6wZdNmeXdj7eriftMTLTJYX5ttr6sLwPjs4GqsaWpQtk8TkTVG+lhg38K9eQh2r6nxx1xMlRcnnxqqqkqfoPGPcG91cv5a4/FmxzK0=[/tex],则[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]为可分的巴拿赫空间。
- 若[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 在周线 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 内部除有一个一阶级点外解析,且连续到 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex],在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 上 [tex=4.714x1.357]TmcsBXzsCVLNElUdaha8WH7fTrtrO9XaTLzNCp3k4xU=[/tex]证明[tex=7.786x1.357]ydNC3EcZ+5ATq34rwwixhCP9QszFjZKwPO53sJ4s3UI=[/tex]在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]内部恰好有一个根.
- 如果函数 [tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 在简单闭曲线 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 及其内部解析且在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 上有 [tex=3.357x1.357]NgmJJpzN2HvpxzS47JUJGA==[/tex] 证明在 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 内部 [tex=3.357x1.357]NgmJJpzN2HvpxzS47JUJGA==[/tex]
- 设 [tex=4.357x1.357]tgXzZuo5eIYlIaH5Xnk01IgEw5opxn064OzrnH8nMWQ72+2IbzFVXopclkoWekA+[/tex], 求环 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的中心 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex], 且证明 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 不是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的理想。