证明,阶是 [tex=1.214x1.214]KJLx+EM1joQACiFbmjb7Lg==[/tex] 的群 ([tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] 是素数) 一定包含一个阶是 [tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex] 的子群.
举一反三
- 设[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]是一个素数, [tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]的方幂阶的群. 试证[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的非正规子群的个数一定是[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]的倍数.
- 证明 [tex=1.214x1.214]YAmc11lx1b6h/GFagS4XAA==[/tex]([tex=0.571x1.0]+NxxLnTh2HAHOCSSr6dlEg==[/tex] 为素数, [tex=2.214x1.143]Ey/yf8/4+daSuDTYxqD4lg==[/tex])阶群一定有一个 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 阶子群。
- 设[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]是一个素数, [tex=3.429x1.357]bT6uyKe7pSB2Fc98d77Dm/O56OzH3v5lq3+iSDeeikjI6BuU+hZsY6Lb1uxFP7B2[/tex]有多少个[tex=0.929x1.429]Oe1sITdLfgoJMrP2LLsThA==[/tex]阶子群?
- 设[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]是素数,证明[tex=6.786x1.5]8xULCs69v20v6Ceiwa6S2gAobyaOn4gKeKl5cfFWjROY3rwWOAydUsAVlyOXG6db[/tex]。
- 设[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]是[tex=1.357x1.357]1BnqVE0wa5Q10v1xdLbpkw==[/tex]的素因子, 则[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]有[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]阶元.