设向量组a1a2a3的秩为2,而向量组a2a3a4的秩为3证明a4不能由a1a2a3表示
举一反三
- 已知向量组(Ⅰ)α1,α2,α3的秩为3,向量组(Ⅱ)α1,α2,α3,α4的秩为3,向量组(Ⅲ)α1,α2,α3,α5的秩为4,证明向量组α1,α2,α3,α5-α4的秩为4.
- 【填空题】设向量组 α 1 = ( 1 , 2 , 3 ), α 2 = ( 4 , 5 , 6 ), α 3 = ( 3 , 3 , 3 )与向量组 β 1 , β 2 ,β 3 等价,则向量组 β 1 , β 2 , β 3 的秩为 __________.
- 设 A: 秩r(α1,α2,α3)=1,秩r(α1,α2,α3,α4)=2. B: 秩r(α1,α2,α3)=2,秩r(α1,α2,α3,α4)=3. C: α1,α2,α3中任两个向量均线性无关,且α4不能由α1,α2,α3线性表出. D: α1,α2,α3中任两个向量均线性无关,且α4可由α1,α2,α3线性表出.
- 向量组`alpha_1, alpha_2, alpha_3`的秩为`2`,则向量组`eta _1 = alpha _1 + alpha _2, eta _2 = alpha _2 + alpha _3, eta _3 = alpha _3 + alpha _1`的秩为( ) </p></p>
- 确定常数a,使向量组α1=(1,1,a),α2=(1,a,1),α3一(a,1,1)可由向量组β1=(1,1,a)。β2=(-2,a,4),β2=(-2,a,a)线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.