试述原子散射因数[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 和结构因数 [tex=3.286x1.571]L3z7pCrUHOc6Sttrx9SdMQATckjSezduOQNens+yFKY=[/tex]的物理意义。结构因数与哪些因素有关系?
举一反三
- 设 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 在有界开集 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]上一致连续。证明:(1) 可将 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 连续延拓到 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 的边界;(2) [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 在 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 上有界。
- 设 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 以 [tex=1.071x1.0]tieuzjBYrMcmxP3HXZSPGQ==[/tex] 为周期且具有二阶连续的导函数,证明 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 的傅里叶级数在 [tex=4.786x1.357]WafKDm5071vVz9IYJgBhj8LbdrnQF2M50OcMtr5E7Yg=[/tex] 上一致收敛于 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex].
- 设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]对任意[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex],[tex=2.5x1.286]EPSGJZaCuwY5xHx7jbphAw==[/tex]适合方程 [tex=8.286x1.357]NrfAfdVJZxj47IYGp0SatnPBpQm8CbV+z0k8TH8YZfo=[/tex]证明:(1)若[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在一点[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex] 处连续,则[tex=5.0x1.357]0vg1WFsquVdtGeGJnyVAbQ==[/tex];(2) 若[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上单调,也有[tex=5.0x1.357]0vg1WFsquVdtGeGJnyVAbQ==[/tex];
- 证明:设 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 为幂级数(2)在 [tex=3.571x1.357]J/gPZBpwGHv4oUGrZadE5w==[/tex] 上的和函数,若 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 为奇函数,则级 数(2)仅出现奇次幂的项,若 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 为偶函数,则(2)仅出现偶次幂的项。
- 设[tex=3.857x1.214]InKUpi6cxupw+BnDNOM0bPzGUtUpclRJyzbVU77wJf8=[/tex]为连续函数,且[tex=3.143x1.071]jbxPDqaptjxuY9xhjQQHm6F1OE0YQqqXgz9/arAiLVs=[/tex]都为[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]的极值点,证明:[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]为常值函数。