设\(A=\begin{pmatrix}a&b\\c&d\end{pmatrix}\)使得\(detA=1\),且存在\(v \in \mathbb{R}^2\)使得\(|A^nv| \to \infty \quad (n \to \infty )\),则
A: \(|a+d| 小于 2\)
B: \(|a+d| 等于 2\)
C: \(|a+d| 大于 2\)
D: 以上说法都不对
A: \(|a+d| 小于 2\)
B: \(|a+d| 等于 2\)
C: \(|a+d| 大于 2\)
D: 以上说法都不对
举一反三
- 下列哪个矩阵的列空间是和其他三个矩阵的列空间不同的 A: \(\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}\) B: \(\begin{pmatrix} -1 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}\) D: \(\begin{pmatrix} 2 & 0 & 2 \\ -2 & 1 & 2 \\ 2 & 0 & 2 \end{pmatrix}\)
- 下面哪个个方阵满足存在正整数\(n\),使得它的\(n\)次方是零矩阵? A: \(\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\) B: \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}\)
- 题目03. 在\(\mathbb{R}^2\)中将向量逆时针旋转\(\theta\)角对应的旋转变换矩阵是: A: \(\begin{pmatrix}\cos{\theta}& \sin{\theta}\\ \sin{\theta}& \cos{\theta}\end{pmatrix}\) B: \(\begin{pmatrix}\cos{\theta}& -\sin{\theta}\\ \sin{\theta}& \cos{\theta}\end{pmatrix}\) C: \(\begin{pmatrix}\cos{\theta}& \sin{\theta}\\ -\sin{\theta}& \cos{\theta}\end{pmatrix}\) D: \(\begin{pmatrix}\cos{\theta}& -\sin{\theta}\\ -\sin{\theta}& \cos{\theta}\end{pmatrix}\)
- 下列哪个矩阵的列空间,行空间,零空间,左零空间维数之和最大? A: \(\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix}\) B: \(\begin{pmatrix} -1 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}\) C: \(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}\) D: \(\begin{pmatrix} 1 & 2 & 9 \\ 9 & 1 & 8 \\ 1 & 0 & 1 \end{pmatrix}\)
- \(\begin{pmatrix} 1 & 2 & 4 \\ 2 & 4 & 8\end{pmatrix}\)的行空间,列空间,零空间,左零空间维数分别为 A: 2,2,2,1 B: 2,2,1,2, C: 1,1,2,1 D: 1,1,1,2