证明下列集合[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是凸集:[tex=8.5x1.357]B56h3GgALlYc5bh/fO4jiSDfdMqNjrMjSwRif//0RubUmdumVENn6tKSBWTw+0dg[/tex],其中[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是[tex=2.714x1.071]/nWgWZWXmeNCPcwAggrwNg==[/tex]矩阵,[tex=5.286x1.286]3p1w9GcSPCZCnrMFLbB62AgfpwFLUOl5j3jrRIrI/uCV6BcwZA+gOaerUc+AGS3N[/tex].
举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=2.714x1.071]/nWgWZWXmeNCPcwAggrwNg==[/tex]矩阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵,其中[tex=3.143x0.929]l6Jw54gxNWln0dfsw44Jtw==[/tex] 如果[tex=2.786x1.0]YX5lolnI6Ykt6Dnvpiqecw==[/tex], 证明: 矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的列向量组线性无关.
- 设矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 相似, 其中[tex=8.643x3.643]3BT1BgBZQ5uJXxD5dg+w26muwh1xN1sRXO8Q3eF5f+iTpB6kD/3/7F/Sewwa3hxWs7TCQWFyZq0QSUW2LGcSxj3jay92Ev0sXUjwbpJxe2w84vpk6B1wjRlgxeXY7DUa[/tex], 已知矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有特征值 1,2,3, 则 [tex=1.357x0.786]C5gMMrS05DsgTY0BSnf1fg==[/tex] A: 4 B: -3 C: -4 D: 3
- 已知 3 阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为 0,-2,3,且矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]与[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]相似,则[tex=4.643x1.357]/AnguSGMpt5KutuBHaXS+w==[/tex][input=type:blank,size:4][/input]。
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的关系,构造[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的关系[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]如下:对于任意[tex=2.786x1.214]UUb6gXN+Pgi3z2iwygIXNA==[/tex],[tex=8.5x1.357]ZrPhw4AVgPUCh8CbjRl3lkyVRUYodt4NCPIQSBDHEZkbUNZqG7lwA3N0Qz1ds7aw[/tex]且[tex=3.571x1.357]4R81Ci1GZLtVgBX2kmc0lg==[/tex]要使得[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是等价关系,关系[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]必须满足哪些性质?
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为[tex=2.714x1.071]/nWgWZWXmeNCPcwAggrwNg==[/tex]矩阵.当[tex=2.286x0.929]MvAzo/W52101fXj5D4S9tw==[/tex]时证(1) [tex=5.286x1.357]v3ftjfg5853+CriE4S8dXA==[/tex];(2) [tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex]不可逆;(3) 齐次线性方程组[tex=4.714x1.357]MHhWKj9Fmo6BowhdwpS8Aw==[/tex]有非零解.