举一反三
- 证明欧氏平面[tex=1.286x1.214]QhBrqZ0FU+twtxjFFi5vxvnG10FFS5WsLXGF/Hpdxzg=[/tex]中所有至少有一个坐标是有理数的点构成的子集是[tex=1.286x1.214]QhBrqZ0FU+twtxjFFi5vxvnG10FFS5WsLXGF/Hpdxzg=[/tex]的连通子集。
- 在欧氏平面[tex=1.143x1.286]TI7jqqDiM1RJHIUxyvKDvg==[/tex]中令A是所有第二个坐标为有理数的点构成的集合,B是所有第一个坐标为0的点构成的集合,证明:A不是连通子集,[tex=2.643x1.286]gaNSlDCBj/lsUEFg11ToRA==[/tex]是连通子集。
- 用集合记号重写下列陈述 :(a)元素 1 不是集合 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的一个成员;(b)沉素 5 是集合 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的一个成员;(c)[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]的一个子集 ;(d) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]不是 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 的一个子集;(e) [tex=0.857x1.0]WBOxEEx6dPfNM3eGriw9WQ==[/tex]含有[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的所有元素.
- 如果集[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个元素,问[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]共有多少个子集?[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的真子集有几个?
- 证明: 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 都是可列集,证明 [tex=2.643x1.0]nnfU3ueC7heOntsosOPpjA==[/tex] 也是可列集.
内容
- 0
两个集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 之间如果存在一一对应, 则称集合 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 等势. 例如,设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是正奇数集合, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是正偶数集合, 如果定义从 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 到 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的映射[tex=7.786x1.357]WfReJ6er2t9fA/rAahwwbhcqf6oz8pvDgXrgk2aZKbQ=[/tex],其中 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 为任一自然数,则[tex=0.786x1.0]kggd+lPl22ZsM3uxh5D+rA==[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 之间的一一对应,因此这两个集合等势. 试说明下列数集是等势的:整数集合[tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex] 与自然数集[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex].
- 1
设集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]中有[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]个元素,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的二元关系有( )个,其中有( )个是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]到[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的函数。
- 2
两个集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 之间如果存在一一对应, 则称集合 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 等势. 例如,设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是正奇数集合, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是正偶数集合, 如果定义从 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 到 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的映射[tex=7.786x1.357]WfReJ6er2t9fA/rAahwwbhcqf6oz8pvDgXrgk2aZKbQ=[/tex],其中 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 为任一自然数,则[tex=0.786x1.0]kggd+lPl22ZsM3uxh5D+rA==[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 之间的一一对应,因此这两个集合等势. 试说明下列数集是等势的:区间(1,2)与区间(3,5).
- 3
设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为同阶方阵,若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]相似,证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有相同的特征值。
- 4
设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是含有[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个元素的集合.[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]中含有[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]个元素的子集共有多少个?