矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]称为反对称的,如果[tex=3.286x1.286]+4mjAfMHdXcM7vsa4fbsJg==[/tex] ,证明:任一[tex=2.429x1.071]kaIcCzgC6SpeVVzRje1dYA==[/tex]矩阵都可以表为一对称矩阵与一反对称矩阵之和.
举一反三
- 矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]称为反称的,如果[tex=3.571x1.286]qm8nDeedLEgA0DXZcr+TB8LLQdJlGl/63aZRSmqWVDY=[/tex]证明 : 任一 [tex=2.429x1.071]fYRl1cpBZV0k8ULAvI7FIg==[/tex]矩阵都可表为一对称矩阵与一反称矩阵之和.
- 证明:数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上任一[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]都可以表示成一个对称矩阵与一个斜对称矩阵之和,并且表法唯一.
- 记 [tex=26.857x1.571]KmQgr4AZneZAlORTasEHX9eiH7/GEh/eJNkSzvx1MYzatMxtW8cFYhqe3co1WlW28ucSre83VmFvUj903Q/tFFHPw889jAfaibck/Bf6LLy2bO5e8UMsZL454ybOc+CN4AkYJKYj8GoXYPbeJ1broYDrZ/RrM4q7REBWy8ZdAkk=[/tex]证明: [tex=3.214x1.143]ljowokcaMyzT0l98bhXRTDw+N1Dk+NA4lXMiqXhktpk=[/tex] 中任一方阵都可表为一对称矩阵与一反对称矩阵之和.[br][/br]
- 对于任意的n阶矩阵A. 证明:(1)[tex=3.214x1.357]joQM8tQMS8YO6tZYRy07MQ==[/tex]是对称矩阵,[tex=3.286x1.286]SWEHfOr2kxH9ZnfQyup5NQ==[/tex]是反对称矩阵;(2)A可表示为对称矩阵和反对称矩阵之和。
- 矩阵称 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为对称的,如果[tex=3.357x1.143]2clv6Xa+ixytxjXZ9Y3BRw4dAIuaCrPoZV0cyMNFz6M=[/tex]证明:如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是实对称矩阵,且[tex=2.429x1.214]9Dzmlpoqgb8wUTG1Zrz7Jw==[/tex],那么[tex=2.071x1.0]P1sZi5Sh6qXV+PX80otJJg==[/tex].