举一反三
- 证明(1) 环 [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的任意有限多个理想的和还是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的理想 (2) 环 [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex] 的任意 ( 有限或无限) 多个理想的交还是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的理想.
- 设二元关系[tex=14.5x1.357]nWKfumG3X+P6w5DlualfqW9XDw6gDTNxW+uTplqfI/x/OgHpgOK3lVLpVzdI3yhj[/tex],试求 [tex=2.429x1.357]VpxpuJ/p+FjXGa+AnkH98A==[/tex]与[tex=2.286x1.357]2EkdX8/PuVShcU6F4+x0xg==[/tex]
- 假定 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是一个循环群, [tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex] 是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的一个子群,证明 [tex=2.429x1.357]YioWiJe8ck8O4ZXClDdCDw==[/tex] 也是循环群.[br][/br]
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是有单位元的整环. 证明:若 [tex=4.571x1.0]e9dgkRD4ubLrCzzjIX5OfX7A5Q7gBBke5x+UKJII8/0=[/tex], 则[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex] 有子环与[tex=0.714x1.0]A/RYZa+bKKYYpjzBS/r5ng==[/tex]同构.
- [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是集合[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]上的二元关系。对于所有的[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]、[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]、[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex][tex=1.429x1.071]JKzFuDkw4uDSbAJpO4itXw==[/tex],如果[tex=1.786x1.0]6EK6Izru+O8tcQzdTzeouA==[/tex],[tex=1.643x1.286]sD2I2onCkUOMNhOU9iKq6Q==[/tex],则[tex=1.786x1.0]KUv3qryIM5pVm6APGV8uaA==[/tex],那么称[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是循环关系。试证明[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是自反和循环的当且仅当[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是一等价关系。
内容
- 0
设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为环, [tex=1.5x1.214]VxtvWlgGBBypyenN8OD8Wg==[/tex] 是[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的两个理想. 令[p=align:center][tex=11.5x1.357]8CM8TB92oV/hI4hxvCjpVOI3C17io1Q4g2yEZDWMOr94qwSdpSa3twYxbMsnM69a51YRJPm5UjHeMkuicETmlg==[/tex]证明: [tex=2.429x1.357]fvTZI9dBC5syJ0twORMkxA==[/tex] 是 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的理想.
- 1
幂级数 [tex=6.429x3.286]F6JA8zHgEi/j3fVRdm8UBze1TNxtHeIOsbmrxvjN1traMYi4l89u5wSFpcC6f3vA[/tex] 的每一个系数 [tex=1.0x1.0]/DJc0lEQ/Y1auXDMJlAodQ==[/tex] 只取值 0 或 [tex=0.786x1.0]ycpt7/PpiATqHUACAPCXCQ==[/tex] 证明 [tex=2.429x1.357]lrCiwS81ZLblJbuP1EmZ5A==[/tex] 是有理函数的充要条件为 [tex=2.929x2.786]4/2fe6ATVmg90LVQ/aOSZ725C9HKFRN+gRqq6RQuUwI=[/tex] 是有理数.
- 2
设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]为幺环,试证明:左[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]模[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的自同态环[tex=3.429x1.214]AMahXgRvckOkvLGOzTTBuAZ2VkgS1nNjQqm8M+IVxGI=[/tex]与[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]反同构。
- 3
设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]为环, 集合[tex=17.429x1.286]1J1SivOWW5Z2LFlO+jxfjuA8rlk01xIOptZycDH6fm7g7o5b+NKM1GTrN/gR+I5wjUgevTCj5VTmWN/Pgsy1UA==[/tex]叫做环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的中心.[br][/br]求证[tex=2.286x1.357]jF3SYJxDJgm6KahDCZyxrQ==[/tex]是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的子环, 但不一定是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的理想.
- 4
下述论证意味着每一个对称的传递的关系是一等价关系。设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是一对称的和传递的关系:因为[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是传递的,如果[tex=8.571x1.357]GjGaWTSa4Bdoe4j6jnGF4cHr009wnDM3tWu29ML1F8F6lqNRGYG1HQhsyiJJiz85Z3puluY6iyE6OC9ikIA+1w==[/tex],那么[tex=3.857x1.357]ChkRPDBbaAzY75Gn+OFDELz/rXkn0NLpT+deAgoBTgk=[/tex],所以[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是自反的。这得出[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是一等价关系。这个论证有什么错误?