假定 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是一个循环群, [tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex] 是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的一个子群,证明 [tex=2.429x1.357]YioWiJe8ck8O4ZXClDdCDw==[/tex] 也是循环群.[br][/br]
举一反三
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是有限群,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的任何真子群都是循环群,试问[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]一定是循环群吗?
- 假定群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的不变子群 [tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex] 的阶是 2 . 证明 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的中心包含 [tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex].
- 设[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的一个子群,证明:[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的特征子群,当且仅当对[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的每个自同构[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]都是[tex=3.786x1.357]/hUAIv2XJLX3YXBqW5nP/A==[/tex].
- 设 [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]是循环群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的子群, 证明: [tex=2.143x1.357]ioWgLJUkMq33E11rZv2NYg==[/tex] 也是循环群.
- 证明:群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]仅有平凡子群的充分必要条件是[tex=3.071x1.357]lhn0XHWkDQjpgStNKz1WNg==[/tex] 或 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是素数阶循环群.