给定函数[tex=3.429x1.214]J8yo5MDlmdG5EQX0zaGmvA==[/tex]的函数表试分别用线性插值与二次插值求[tex=4.714x1.0]Ko6eFWPIXhqf7Xa0MkzmPg==[/tex]的近似值.[img=530x71]1795434c17f0574.png[/img]
举一反三
- 给定函数[tex=4.143x1.357]xe0pQFG03hsSf3z3JfzIEA==[/tex]的一个数表[img=660x189]178fcd27d6cd946.png[/img]试分别采用: (1) 双一次插值 (2) 对[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]二次、对[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 一次的二元插值; (3) 双二元插值,计算[tex=4.786x1.357]o1tzBI5tDPKClK7CmPWmfQ==[/tex]的近似值。
- 给定[tex=3.571x1.357]0jgNZNb5KE0SpRQgBt7oQg==[/tex],设x=0是4重插值节点,x=1是单重插值节点试求相应的Hermite插值公式,并估计误差[tex=4.071x1.357]ZHsKcW72rLaSaexOsDovRw==[/tex]
- 给出函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的数表如下,求四次Newton插值多项式,并由此计算[tex=3.571x1.357]CVxr8Ji3HATzh3Ukvn/FRQ==[/tex]的值[img=534x61]17705a17dcc624c.png[/img]
- 试利用第5题的差商表,构造两个二次 Newton 插值多项式以分别计算 [tex=2.571x1.357]a8nI0Gc2fL91kAlqUw5uRg==[/tex]和[tex=2.571x1.357]0LZEkSSLHgctqsXdHaKVRw==[/tex]的近似值,又构造一个三次 Newton 插值多项式以计算[tex=1.786x1.357]7OQ6MnGIbo1txdlYbmL7wQ==[/tex]的近似值。
- 给定数表 [tex=21.643x2.643]I08GkjPu5ilZ1cL3oVOjRL94ZniAofATciq55m+QEppOinvdfFsD1GPcEzXxJeZyPuftWZMYKKA1E78yH2uhhmbpmqjTV6GdCErIl8et6rbVzOV0kr1+Q3eitvOWbkU3WEmBAk0BMBGmlmxigtgvUog5HWbSLleuWhQKyLddRoU9vHJVQV1va+dnapjhhbDag6uFOB8QfQXh153AN5HKIg==[/tex](1) 以[tex=6.286x1.214]pLQy7HPo2yLnjmVhSxjwSeuB2rJrf7oaZAXCQNAvZlI=[/tex]为节点作二次插值计算[tex=2.357x1.214]tBRYVJtLVNKF7hqDRXJmqg==[/tex]的近似值,并估计截断误差。[br][/br](2) 以[tex=4.0x1.214]OSL37hGFNrvyd7prHXKUCg==[/tex]为节点作线性插值计算[tex=2.357x1.214]+JLnqdzJ2H33zzYqzpIx5g==[/tex] 的近似值,并估计截断误差。