• 2022-07-23
    已知矩阵[tex=8.786x3.929]3BT1BgBZQ5uJXxD5dg+w2+21sOP+eQqXio0r0Ve1TAzc+09euNshRcFrRcRzlpbcd8BSKulrao2PyCw1z08relhjKY2JI3WA86j0bPwCFFRDfQt3Jkg3Sj+xUVOPeVp0[/tex]求可逆矩阵[tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex], 使[tex=3.143x1.214]W4jiGACeVytyGqwMmeXGeQ==[/tex]为对角矩阵,并利用这个结果计算[tex=1.143x1.214]uaraAcLEwkseim1TKEKUjA==[/tex]。
  • [tex=22.214x3.929]J3P4QYhPgQfJ+BLu8e4zv9fOjz7/gYPR8HVs+NKemD9KLIaeAtHqFb+aUlxz3ct4x0txLpVG4lN5kxFr59YZhYCXkYhQsT72tm+13ZLQp/O4B2+GW0XD/GpCzbUsNp2BM7ghB3+F5c/TMRZYCqbRmITuMI8ul6Ys7tHWa3CiGF/F7SGlPtSg3saM58pSi1oQVh34apu13vMKTlNj/eSKAQ==[/tex]故得特征值[tex=10.786x1.214]RU+LhY2MUOc+6o925YvTlMUlfyUFk/5le4o/tmmI8ICdWmqhQ7V4BnPkmS2g8j7Bgfg5ebSkFqswGleM1231pnTTmua2Do/Upmo1QTT5j4E=[/tex]时, 解[tex=5.214x1.357]S3kafPulH1Q3OwQoRAV8qw==[/tex]可得特征向量[tex=8.214x1.357]oPAm5hDvoOvAxMDh/LMEH2RO+Gm9sRC/QiO6HzB6SHYA3WCfduGpRvGLkxqiQ3uu[/tex]时,解 $(2 E-A) X=0$ 可得特征向量[tex=7.857x1.5]6HCzLEck2ODD8FFzKMa5qsmdagVZeLg0aBwBpzNh1A6SMSDkw094JYcIdY1w0zCK[/tex]时,解[tex=5.714x1.357]eK/1nn9oKtQb2zaE7UgVBw==[/tex]可得特征向量[tex=14.286x3.5]Lb5F3FrowFW1IFwKFhgBs44GgNU9lkQAJovOo2W4BVz1fDyd3bAXNWkM18QDqkbys809MJEiF9eDNU9f3wSCKR6crrMcW4ngjhFbpqnHfObDuMwrRJqK+pEIF7/O7kmbJj3+gYk0pGxX2uNs9yS1Eu6kGTlMCjvXG3/sA1OqYyA=[/tex]且[tex=10.214x3.5]q5oFn8UdIdGs1lke+YUkd8p+MS9H7CG7Jg37DtRhQFK4vLrNTuy1SreHJlPUlF8IDC6WmlgtUY+Jh+/owmP/RXmrmVRH9pWK+qWvzofKQ5FORSf9reYvY4b62WGJoKZ5lmWLiN9Ca1/38s3t6w8g2w==[/tex] 则[tex=10.429x3.5]2gT3AScHyQxUMVPJK7HgE+fAnF6UHhr5p7+Q7VoaOd2VvZQxrLVYo+WP3bS0TxMWKaFE7LypA5xXE6slKlyCduA9aE8gMjTs8rSgZa9vkkBsP9kDnmW3oUcwyqvTibKbVznu4eBLaqHFDC8+RaZtgg==[/tex][tex=11.714x3.5]u0ICTKL2ztIiEiScy2q1+2kanImYBXJSsqJvBtHVwaYLwta97EY5IBGE87HyhW3LxMY2ym+tW75GASSADhdDOjQWP/sMDrhlPiksAsgaHGtxhMOr4/hS2z+vyRkUyS1InP2pw3inmJNbWRJx6mwJBQ==[/tex][tex=23.714x3.929]ZGTtUfVHiJDAU4i+qE4bMj/zqM9CUJrh9wCYyIFegQKGz4VUMbXWttViDngecZ79YmetM4yIugEgTCbFrHdxzsar15xP2DE0jV3w7qfyMsJ69EBN/2M4DlV29drksWVMaMcrMecvQbdVqOSRf+Cv8UdmEOcXUaSzQt4Vrnv7WIl/9BFm5qE8Ev+2Nn7ezxRxO9KfdDgr4smA8BHEv0MYW9vwNBhXuUIuK1XB3CG2sehsU+hHABvzppkk3jl1H3o1iadTCg6jLscMe/5mFG9hc7+BValHpRWBX0//dpWeE0IH66VS6W9RuosyeX4DeytwXNOos4XTyLft7ccYiRHOXQ==[/tex][tex=11.0x3.929]CMIhUyI8bpw2/d9UIDux4oUr+HKWWlmi7Vw29sFkInLTTlSo3QoPxT9x/eqOl9hVJH0TL5ye6mBt7zUZ/I1PjUFGFam8TtRSE3Rg6nMbvlCzBy77aYLbcIWQLzPRdjqiNstXr/QyII/ivXLradKL3g==[/tex]
    本题目来自[网课答案]本页地址:https://www.wkda.cn/ask/eeeezpmyppotoooo.html

    举一反三

    内容

    • 0

      假设原始问题为: max z=2x 1 -x 2 +3x 3 -2x 4 s.t. x 1 +3x 2 - 2x 3 + x 4 ≤12 -2x 1 + x 2 -3x 4 ≥8 3x 1 - 4x 2 +5x 3 - x 4 = 15 x 1 ≥0, x 2 :Free, x 3 ≤0, x 4 ≥0 则对偶问题中约束条件及决策变量的符号依次为: min y=12w 1 +8w 2 +15w 3 s.t. w 1 - 2w 2 + 3w 3 ( ) 2 3w 1 + w 2 - 4w 3 ( ) -1 -2w 1 +5w 3 ≤3 w 1 - 3w 2 - w 3 ≥-2 w 1 () 0,w 2 () 0, w 3 :Free

    • 1

      设[tex=0.929x1.0]9MCaa3NdBrky4bnBPtTtgw==[/tex]为四阶矩阵,且[tex=3.429x1.357]dYcL9NtiYXHAsxWaaTXNyg==[/tex],则[tex=3.643x1.357]K61mVROvnMmG4VfTKldoUJpacWgNjgbg3TOLujupPak=[/tex] 未知类型:{'options': ['0', '1', '2', '3'], 'type': 102}

    • 2

      求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$

    • 3

      已知3阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值为-1,1,2,求(1)矩阵[tex=5.571x1.286]OQw0X5RQo5/vziR0ICSSmg==[/tex]的特征值;(2)[tex=6.0x1.286]GiUfMyexR+ktDmrZJuZTGw==[/tex]。

    • 4

      [tex=2.214x1.0]Z8GWW72u+MH/mjafnp+83A==[/tex]丙酮酸经过丙酮酸脱氢酶系和柠檬酸循环产生[tex=4.0x1.214]EPDWVFNjIR8daNoozaWRDg==[/tex],生成的[tex=3.214x1.0]1AqDCKqjaAug6buHS5Z0tQ==[/tex]、[tex=3.429x1.214]HYAn2+I9AZQLWcA3ajoPaw==[/tex]和[tex=2.143x1.0]qQANfGnLx7pE5mcaEibuNg==[/tex](或[tex=2.071x1.0]YGdeb/NAM7yg+XY6SY16Fg==[/tex])的摩尔比是(  )。 未知类型:{'options': ['3:2:0', '4:2:1', '4:1:1', '3:1:1', '2: 2:2'], 'type': 102}