已知矩阵[tex=8.786x3.929]3BT1BgBZQ5uJXxD5dg+w2+21sOP+eQqXio0r0Ve1TAzc+09euNshRcFrRcRzlpbcd8BSKulrao2PyCw1z08relhjKY2JI3WA86j0bPwCFFRDfQt3Jkg3Sj+xUVOPeVp0[/tex]求可逆矩阵[tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex], 使[tex=3.143x1.214]W4jiGACeVytyGqwMmeXGeQ==[/tex]为对角矩阵,并利用这个结果计算[tex=1.143x1.214]uaraAcLEwkseim1TKEKUjA==[/tex]。
举一反三
- 下列[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级实矩阵是否可对角化? 如果可对角化,求出一个可逆矩阵[tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex],使得[tex=3.143x1.214]W4jiGACeVytyGqwMmeXGeQ==[/tex]为对角矩阵.(1)元素全为1的矩阵[tex=0.571x1.0]qmbwF4Pp2sLBvOFTeKQ/mA==[/tex];(2)[tex=4.286x1.143]D///ZYR2Cm4aXYO/0aq0cg==[/tex],其中[tex=5.357x1.214]uj7/feOSZWKk4PNG9ZOL8BTpTkVzI44MYzBVdh48LX4=[/tex]
- 设3阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值为-2, -1, 3,矩阵[tex=6.786x1.357]5sQBSCH1+oEoQda8DcapHw==[/tex],求矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的行列式[tex=1.357x1.357]JRr5OoiiAPF9KB2ukKJtuw==[/tex]
- 已知[tex=1.786x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]为3阶矩阵,且[tex=6.5x1.357]Xw38Dcvrbs7IEKOZRvkd5g==[/tex],其中[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]是3阶单位矩阵.(1)证明:矩阵[tex=2.786x1.143]RcZ2ZRIlzxNTbD8lUHAX+Q==[/tex]可逆;(2)若[tex=7.786x3.5]DgXZT9CtCPAglTYwc4pEdVwGPrEvfplbNSz07f1CHm3lKZFzRkIi88nqRWCa7cdxtDn1Uq6Au4bDH+3NSK9+pGWuIrunnKgMXUiXxap7tYqS5e4P0ZLrWW76zZyDl/um[/tex],求矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]
- 已知3阶矩阵A与3维列向量 x 满足[tex=6.857x1.357]zd0nq0IiNsY0hFTyLJHQy4eC+A8zUY14VqChcVve0aM=[/tex],且向量组[tex=0.714x0.786]Qp78QkdFrqytlOsANWrP9w==[/tex],[tex=3.5x1.429]c2YtesCJSYo0KOSy0rMECg==[/tex] (1)记[tex=10.643x1.357]3tyZrBE07WCx0ZFK2Y3aVjbjYUrJ/5Q0lIjkUE1dgc8=[/tex],求三阶矩阵B,使AP= PB;(2)求[tex=1.357x1.357]0awZUhfhOcjHk6LSkdT6Gw==[/tex]
- 设二维离散随机变量[tex=2.5x1.357]PWg5V4GQQafckGNgbx6gmw==[/tex]的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 各自的边际分布列.