设函数[tex=1.929x1.357]qtItT2nSs9gJhyd/XUewoA==[/tex]和[tex=1.857x1.357]xcTe3Sdqv0rnrdNTbK1JGQ==[/tex]是方程 [tex=12.214x1.429]kZEA+hnXLQstB34gsSjojjwQ/JFddmkddBv6L49RZYIn4e/Pl66Q3nbmMJyDFlvOranPQTkh4yT3RmTR49peKw==[/tex]的一个基本解组,试证:方程的系数函数[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]和[tex=1.857x1.357]9+kIsKaWTXKIfcjZp3srqA==[/tex]能由这个基本解组唯一地确定.
举一反三
- 设 [tex=16.357x1.5]kr7k0KBPUeONeZwTW+894khfetYN31lKq1nVLp8hE2dcnyvRVQtizVN+TeVGKedy[/tex](1) 求[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 除 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的商 [tex=1.857x1.357]9+kIsKaWTXKIfcjZp3srqA==[/tex]和余式 [tex=2.143x1.357]u0kLHrRFHKwKpOrb+U7MSA==[/tex](2) 求首项系数为 1 的最大公因式 [tex=5.214x1.357]ULfD42YUHpUMzAJu7WPRDKu5//4FSSF/xXyTUDWUUQw=[/tex](3) 求多项式 [tex=4.071x1.357]jxvhZiY+yy3z8BpZfEQInA==[/tex] 使[tex=13.929x1.357]Wh/7jOZlE0fZtGn7AMNHm89Nhtbm+DWd6RzkJ1+fXVGFMF0xdqviYq0jE8QpoFCF[/tex]
- 证明:设 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的代数元, [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的一个首一多项式, 则下列条件等价:(1) [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 在域 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的极小多项式;(2) [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 在 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上不可约, 且 [tex=3.429x1.357]+nzvPBU74mdetNBw41Ue1A==[/tex](3) [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上以 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 为根的次数取小的非零多项式;(4) 如果 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是域 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上任意一个以 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 为根的多项式, 则 [tex=4.857x1.357]+3zmuKty1AhSMDB3tNdbXzDDg/gxGAj+UD6ur3wtHjE=[/tex]
- 设[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]是[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的导数[tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex]的[tex=1.857x1.143]y7i0KNMTbem23CcX+abErQ==[/tex]重因式,证明:[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]未必是[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]重因式.
- 设连续型随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率密度函数和分布函数分别是[tex=4.857x1.286]4HgUMP78A4oCHaAbbGfxwTtLg8eQbumXFF7QH/gEfMk=[/tex],则 未知类型:{'options': ['[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]可以是奇函数', '[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 可以是偶函数', '[tex=1.857x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]可以是奇函数', '[tex=1.857x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]可以是偶函数'], 'type': 102}
- 设 [tex=9.857x1.357]0T+1c7zq/idbMqaaWgotqWHr6fZNYBkXTLjhyQglJzp0iOIdZEz3WbEw/Pb+3qlO[/tex] 又 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 满足 [p=align:center][tex=6.357x1.357]+3zmuKty1AhSMDB3tNdbXxLJRZTFKVq4xUmyZwpiyJg=[/tex],则 [tex=4.571x1.357]NaXhQuud9whTIdEia7cAy145H6cmmDHeiC85YWZqPkg=[/tex] 或 [tex=4.571x1.357]yOyH9WGEdakx47yTMUJ/qAG7LUpVFYIOzNODeDvbQnM=[/tex].试证 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 不可约.