设[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]是惟一分解整环[tex=0.929x1.286]nrJzN9qRndstwtgYfof7gw==[/tex]的分式域. 如果在[tex=1.786x1.357]DpXALeWBl8+QhoNGSoieqQ==[/tex]中有[p=align:center][tex=6.429x1.357]eLAsG/+flQr7kHDdrpKQrQ==[/tex]但其中[tex=6.643x1.357]DK7pDZT68NyzH+9bx+gD2J/BlXrHm5S4I+bZrWu4Wa4=[/tex], 而且[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]是本原的. 证明[p=align:center][tex=4.571x1.357]IgHosjLgNqqi335Ym7yzxQ==[/tex] .
举一反三
- 设[tex=0.929x1.286]nrJzN9qRndstwtgYfof7gw==[/tex]是一个惟一分解整环,又[tex=6.643x1.357]DK7pDZT68NyzH+9bx+gD2J/BlXrHm5S4I+bZrWu4Wa4=[/tex]. 证明: 若乘积[tex=3.714x1.357]OzzRCXKpB+NCOpQoLgyZtQ==[/tex]是本原多项式,则[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]与[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]都是本原多项式.
- 设 K 是惟一分解整环,又[tex=6.286x1.286]Gb9ARy1wIBQNO46LZPCsb/7LKOhSR3PxvvK3ifFqV7c=[/tex]且[p=align:center][tex=8.214x1.357]UBOQ/D7EapUolc6uePws69AkF4QCjvbEHCaf1arho6M=[/tex]证明:在[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]的商域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]中,若[tex=0.857x2.143]nSvcHuaAckXMHW8ZsUYRfw==[/tex]是[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的根,则[p=align:center][tex=10.429x1.357]HowHgnuQZZppR7tMxvh0TVl2lB9s+9b3SG53Q90KJws=[/tex].
- 设 [tex=4.071x1.286]nR/cJv6OqBZsTDNk+MpaBw==[/tex],证明不等式[p=align:center][tex=12.0x2.286]X/Ri20XB58Oz2ZfZYw8yP6qEPtmDovjJXhp8eOv8KNGfaJgnC6X1XEJ+2xzOJGQkwqKgHtAAyzdujVIOGdlO7gycABMU66WddDs30mp1D7k=[/tex]。(本题满分8分)
- 设[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]是系数属于域[tex=1.071x1.286]Yf9vilsri8269WAMogYgOQ==[/tex]([tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]为素数)的一个多项式, 证明[p=align:center][tex=5.929x1.357]Ny0A5/F+eAq0do7xYJbhJFg93F1cOmaZyx83cJIoRCU=[/tex].
- 设[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次不可约多项式. 证明:域[tex=4.929x1.357]njosFGDO7yvJFVSOTQJupg3OOMyVps/xfdnFE6MhqbY=[/tex]中的每一个元素都可以惟一地表示成[p=align:center][tex=16.143x1.5]zQdyJRLizma4ddoPjtTsQbUeTnBBFPQDleICij4IJfuVTEg231F6ecvf2oa3hp1tBjTVvzhBhTzt+rNDtZZ4sr5+/vz3wC836E6VsnpPjAA=[/tex]