若[tex=1.286x1.0]O85wXfc7ZzKGiLNgY0s0jw==[/tex]为[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维酉空间,如果[tex=3.929x1.357]6x4dAwbALFIPPfeqnbf6C+6KoaimKMZtV+PHy9mTNRYREFH5o7Iy3NDJNeA3S8Ud[/tex],那么称[tex=0.643x0.786]SPoVA3bJlgfP9Ek9O4AbuA==[/tex]与[tex=0.571x1.214]DXE2qJe9QayJDT2HOCKrUg==[/tex]正交,[tex=1.286x1.0]O85wXfc7ZzKGiLNgY0s0jw==[/tex]中,由非零向量组成的向量组组成的向量组如果每两个不同的向量都正交,那么称这个训向量组是正交向量组。证明:酉空间[tex=1.286x1.0]O85wXfc7ZzKGiLNgY0s0jw==[/tex]中,正交向量组一定是线性无关的。
举一反三
- 若非零向量 [tex=0.571x1.214]CyLt5nwVs0oLAbCn8AssqQ==[/tex] 与 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维向量组 [tex=7.357x1.286]R0e8EvGKxoRF/d3KCJfJ6nWq9mzmujOc8vAfQ9cjJOJFoflgKZSB6T7Eu7dsiO2cW45cmeYSa2yI+C2CGq+mEA==[/tex] 中向量都正交,则向量组 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 必线性相关.
- 证明:在[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量空间[tex=1.429x1.0]id8CqLD3sKgZOEL0mYn1xA==[/tex]中,任一线性无关的向量组所含向量的个数不超过[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]。
- 判断问题中的向量集合,能否构成相应向量空间的子空间(其中[tex=1.286x1.0]Rag7iAuxW9MiA80Rn4COPA==[/tex]表示[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量空间).[tex=1.286x1.0]Rag7iAuxW9MiA80Rn4COPA==[/tex]中坐标是整数的所有向量
- 判断问题中的向量集合,能否构成相应向量空间的子空间(其中[tex=1.286x1.0]Rag7iAuxW9MiA80Rn4COPA==[/tex]表示[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量空间).第一、二个坐标相等的所有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量.
- 判断问题中的向量集合,能否构成相应向量空间的子空间(其中[tex=1.286x1.0]Rag7iAuxW9MiA80Rn4COPA==[/tex]表示[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维向量空间).[tex=1.286x1.0]Rag7iAuxW9MiA80Rn4COPA==[/tex]中坐标满足方程[tex=9.071x1.214]VIpDcVvRK8OO3DsJqCoOuuneH3bQ8hEM8Gj4QI3on/Q=[/tex]的所有向量