举一反三
- 证明:若 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 为 [tex=1.786x1.143]6hdPZpBxyYP+didumSY52A==[/tex] 函数,则[br][/br][tex=8.5x1.357]a6l1i0hHnB/c8Lyz9Rd1MRRPyMPBwmEKiboccSFd7b8=[/tex]
- (1) 叙述无界函数的定义;[br][/br](2) 证明:[tex=4.0x2.357]Skzfc0ZxjrbUnQ48HU5E0tXmPoDSwwji7Ikqu4Ix2eQ=[/tex]为[tex=2.286x1.357]IVQHL7gpVvGMeTU2JgKtIg==[/tex] 上的无界函数;[br][/br](3) 举出函数 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]的例子,使[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]为闭区间[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上的无界函数。
- 证明:若 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 为函数,则 [tex=9.857x1.357]8USmHdFqvMrIwX+ztV4M7gB2th4y0rQL3FzmNZPVjSA=[/tex]
- 证明:设 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 为幂级数(2)在 [tex=3.571x1.357]J/gPZBpwGHv4oUGrZadE5w==[/tex] 上的和函数,若 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 为奇函数,则级 数(2)仅出现奇次幂的项,若 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 为偶函数,则(2)仅出现偶次幂的项。
- 设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]对任意[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex],[tex=2.5x1.286]EPSGJZaCuwY5xHx7jbphAw==[/tex]适合方程 [tex=8.286x1.357]NrfAfdVJZxj47IYGp0SatnPBpQm8CbV+z0k8TH8YZfo=[/tex]证明:(1)若[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在一点[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex] 处连续,则[tex=5.0x1.357]0vg1WFsquVdtGeGJnyVAbQ==[/tex];(2) 若[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上单调,也有[tex=5.0x1.357]0vg1WFsquVdtGeGJnyVAbQ==[/tex];
内容
- 0
设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]为定义在[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上以[tex=0.643x1.0]uPu/UBwxTDghY6MHYDLmcA==[/tex]为周期的函数,[tex=0.571x0.786]WLga5RWgrUta8vWDwROpYA==[/tex] 为实数.。证明 : 若[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在 [tex=3.429x1.357]yn+eS8j3jL70HAQbcELryg==[/tex]上有界,则[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]上有界。
- 1
设[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]为可导函数,求下列各函数的一阶导数:[br][/br](1) [tex=5.571x1.571]h7eWmw/XwEsBN2gkdn2cE9vd8Ve0MATjdsoFxMhCMLFenkwYbbLfP1dxu+eg/tIz[/tex](2)[tex=5.643x1.357]cUjh8uerl905q1pR0g7dPA==[/tex][br][/br]
- 2
设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=4.0x1.5]o0EugHY/eN16Hz+QLo+BIUiKWbXKuxVC0tSzj7xDCHi+kyFognSyy6B7Ak0bbIxH[/tex]中的有界开集,[tex=3.857x1.214]Tho5m+2VLMUARZGtb7om2ZtLvl+pxnfDP44ZAfSBunI=[/tex]为一致连续的函数,证明:(1)可将[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]连续地延拓到[tex=0.786x1.143]wPwG2U8kBJ7pwP99XAF/rg==[/tex]上;(2)[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上有界。$A$ 上有界.[br][/br]
- 3
设[tex=3.857x1.214]InKUpi6cxupw+BnDNOM0bPzGUtUpclRJyzbVU77wJf8=[/tex]为连续函数,且[tex=3.143x1.071]jbxPDqaptjxuY9xhjQQHm6F1OE0YQqqXgz9/arAiLVs=[/tex]都为[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]的极值点,证明:[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]为常值函数。
- 4
对于给定的[tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex]和[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex], 判断[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是否为从[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]到[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的函数[tex=4.143x1.214]Tho5m+2VLMUARZGtb7om2Y9rIKcv7m4ZXqvck1xH+40=[/tex]如果是,说明[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是否为单射的、满射的、双射的.[br][/br][tex=8.0x1.357]G0SfCY5ZFVEJAhJCopRznVmqfZuvcz5OYbH6w40t4B4=[/tex]