举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵, 已知 [tex=5.5x1.357]AhNdH2MMZrSh49k5SUPih3WmvYY4iHWErcMsIMMT5L8=[/tex]证明:当[tex=2.214x1.071]64bbjuyExeVSV8gL25b8fg==[/tex] 时, 矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为正定矩阵.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 实矩阵,[tex=0.857x1.0]ubPM9AyoNrlSc0V+wMCCQzy50BdPG4mkARA+lu2reE4=[/tex]是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶单位矩阵 , [tex=6.571x1.357]MVsnGUDjteIUZsyQP8wk5lDqyxeYWJHlkMfjdD128N1yNmNz9cH4TEr8VKwZJ2LvIP0Q0/vAlTzNgHyHlr+aerUkssArj3hnbhqcO3t/kF0vg//FaNVxv1DI6qwrZ4tP[/tex] 。证明当 [tex=2.429x1.071]8zpXB85KiofkRevQFrdlFA==[/tex]时 [tex=1.357x1.214]A4csvKrMwGXMO83DS3NGNQ3wZ0PmueSDXc7YNJmyLy0=[/tex] 是正定矩阵。
- 设矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵, [tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵. 已知[tex=3.429x1.357]SMB0AC6IZNDjxg6K+6zWVn+BWIvVutF9O8pSdcF38cg=[/tex], 试证:若 [tex=3.071x1.0]TNRWo7OzENdr5HSXo87j8Q==[/tex], 则 [tex=2.286x1.0]Rm+ZbMwYAAWgp04m4WOymg==[/tex]
- 设矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵, [tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵. 已知[tex=3.429x1.357]SMB0AC6IZNDjxg6K+6zWVn+BWIvVutF9O8pSdcF38cg=[/tex], 试证:若 [tex=3.071x1.0]9p6jQHnicI+OkelBMty3Kw==[/tex], 则[tex=2.643x1.0]ePSuKq512kV1g5Dvpe7S7g==[/tex]
- 设 4 阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足条件[tex=13.429x1.571]pNXwj7dxoGbcprO3/HATinbMcrt8sC5y1uPd3TRH6ssCiv8WtIXVXb9cSHXuJP20[/tex], 其中[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]为 4 阶单位矩阵,求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的伴随矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有一个特征值。
内容
- 0
设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]阶方阵,[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶可逆矩阵, 矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的秩为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex], 矩阵[tex=3.071x1.0]PxoG+lJftcaSXuD7xhU13Q==[/tex]的秩为[tex=0.857x1.0]5o/cLuWaJfzEVwUboXrosw==[/tex].试证[tex=2.071x1.0]USs9GFT0Wu9uFkvPUS/nkA==[/tex].
- 1
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=2.714x1.071]/nWgWZWXmeNCPcwAggrwNg==[/tex] 矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵. 若 [tex=3.214x1.214]Zd4LbMRJAkCJfdBwm7Q3pg==[/tex], 求证: [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个列向量线性无关.
- 2
设 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是实 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵. 试证 [tex=0.786x1.0]VCFC+VP8w+sMJeRvvNnjBw==[/tex] 为正定矩阵当且仅当对任何正定 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]PutU1cWdyHyySBp7YfCWhQ==[/tex] 及实数 [tex=9.714x1.286]oUHjocG8NyrFpz5xluPGjVBwMqdo0SsQbqcFfRrPl5De1mcdBqGoXCbTQU2+CJKBWCubJ4DGp1EJ8LN1Lp9fGQ==[/tex], [tex=3.5x1.214]OwSXGS2Xb/MLUGvk44HeeUvDzEABepl8Va4Fc3Yyq5w=[/tex] 是正定矩阵.
- 3
设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶正定矩阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵,证明: 存在[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶可逆矩阵[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使得[tex=9.143x1.429]XRMmUOtjtKMyseaeIn9jPM1TnNKlMhqAAioUZ3jWn/FX+SyCCFosC01uB/CWa/Kl[/tex], 其中[tex=0.714x1.0]AiT6fhT2pvop+UvpD2oClg==[/tex]为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶对角矩阵。
- 4
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定实对称矩阵, 满足 [tex=4.071x1.143]23C06xV+qahUl1T3xcoZnwRQpH8YtXCwkd9Ub4sG38M=[/tex],证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可对角化.