设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是复数域上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间. 将它看成实数域 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 上的线性空间 [tex=1.143x1.214]FXxOSvFzBpxf1HYaDQ5h9g==[/tex], 对任意[tex=3.5x1.214]IWP1r39J4XibcV+mTiB0evYjPX/VKZHoyJR3C/gQQTs=[/tex] 按复线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 中的加法定义 [tex=2.0x1.214]aienUnFkiSd5Ehc6C0WlZQ==[/tex], 对 [tex=2.429x1.214]fHpho+I6DLgkLM4s1EKhdOquo3YOq2vLHbRIQOTsspU=[/tex] 及实数 [tex=2.071x1.071]SQ38n6R/neyCyCbH85pk3A==[/tex] 按 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 中向量与 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex]( 看作复数 ) 的乘法定义 [tex=1.571x1.0]uaBLeNRkgU4ez3iBnRCJTLpVtrw/nCFX105tfT9lsr0=[/tex] 求实线性空间 [tex=1.143x1.214]FXxOSvFzBpxf1HYaDQ5h9g==[/tex] 的维数,并由复线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的一组基求出 [tex=1.143x1.214]FXxOSvFzBpxf1HYaDQ5h9g==[/tex] 的一组基.
举一反三
- 设[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]是数域上的线性空间,证明[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]有一组基.
- 求下列线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的维数:[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵全体组成的线性空间;
- 求下列线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的维数:[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶反对称矩阵全体组成的线性空间.
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上一个线性空间. 证明: 若 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是有限维的, 则 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的任一子空间都是某些线性函数的零化子空间.
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 上[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵组成的线性空间, 令 [tex=14.071x1.357]526RfeuoVuYFKMeevCzg3ALQwrIMoLSjnd4jNqAgq3b0SbOJw1J3W132MAq3sEvgFgMY+RJMUHzLRJJVfTrs8Q==[/tex] 是第 [tex=1.857x1.357]DPfV/kz2+j7DkAnudNw66w==[/tex] 元素为 1 、其余元素为 0 的 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵, 求证: 全体 [tex=1.286x1.286]TpiThXZs62EvtJGFwo2zsw==[/tex] 组成了 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的一组基, 因而 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是 [tex=1.5x0.786]uDlrM/k6mXUKzRmRUTQRAw==[/tex] 维线性空间.