设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]为环,[tex=2.929x1.143]a9qTzPsUmiarqY8I8O9oKw==[/tex]. 证明:在自然同态[tex=4.214x1.357]H63lzD+rmAHOABNT7tZf5A==[/tex]之下, [tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的理想[tex=0.857x1.0]h610M+sGyf59WggKwaDo1Q==[/tex]的象为[p=align:center][tex=4.5x1.357]Mj8RuD/+/gqXIUcO6oqg0Q==[/tex].
举一反三
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]为环, [tex=0.5x0.786]WKYr2kz69xrVCyPvbyVG1w==[/tex]是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的一个幂等元. 又令[p=align:center] [tex=20.143x1.357]1nNx0v0xahUov8iOMsbIJSTePpYEVwplkGBgTsS4c8sqIb+EnuG7ytbM1JlbstfDj0yZgartECCb5ywUL0GEWw==[/tex][p=align:center][tex=16.357x1.357]K74PCw+F0FdcOYfSdPHPtNBUkPbvTYXg6JylocAerDNeaw7pzXoIr6yj8NWIxwCw[/tex]([tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]不一定有单位元)证明:[tex=6.714x1.357]Bis8/eY8aphbE2JEKHudIA==[/tex]分别为环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的左、右理想.[br][/br]
- 设[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]是群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的一个正规子群,又[tex=5.143x1.143]8k2E7wneVV3EWBTpmogR8vhhPkFysvLe2iZpQaPrGp8=[/tex]. 证明 : [tex=0.857x1.0]h610M+sGyf59WggKwaDo1Q==[/tex]在自然同态[p=align:center][tex=4.214x1.357]m7/wQHWhw1g1/gbLMDukOw==[/tex]之下的象是[tex=2.143x1.357]YIC9md7ZC2+5vFgle7y+0w==[/tex].
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]为环, [tex=0.5x0.786]WKYr2kz69xrVCyPvbyVG1w==[/tex]是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的一个幂等元. 又令[p=align:center] [tex=20.143x1.357]1nNx0v0xahUov8iOMsbIJSTePpYEVwplkGBgTsS4c8sqIb+EnuG7ytbM1JlbstfDj0yZgartECCb5ywUL0GEWw==[/tex][p=align:center][tex=16.357x1.357]K74PCw+F0FdcOYfSdPHPtNBUkPbvTYXg6JylocAerDNeaw7pzXoIr6yj8NWIxwCw[/tex]([tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]不一定有单位元)证明:[tex=5.714x1.357]Z3oibzrlRhHqic0yqSPhvQ==[/tex]与[tex=3.786x1.357]maY8sld12/N7audyO7jvLA==[/tex]都是[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的子环,且后二者还是零乘环.
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是一个环, [tex=2.0x1.071]oYU6699DPbu9TiKgTE5IEg==[/tex]. 证明 :[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]对以下二运算[p=align:center][tex=10.786x2.786]c8gX0O6CKBpyqTBZ2fB4Dg4OilMZFIykn6wqx26v/ft2WbzX9YovTjcJWu178wS23+g/vcBeBZVdEiFFwz2fBD3xuQjWLCCeTcojW7TB3v0=[/tex]作成一个环且与原来的环[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]同构.
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]为幺环,试证明:左[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]模[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的自同态环[tex=3.429x1.214]AMahXgRvckOkvLGOzTTBuAZ2VkgS1nNjQqm8M+IVxGI=[/tex]与[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]反同构。