试证明下列命题:设 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex] 是[tex=1.214x1.214]u/EwPhudbQnOqlmqWT4jSQ==[/tex] 中的可测集, 且 [tex=9.0x1.357]2b8BD5rg/N7dKR9nNkk9yw==[/tex], 则 [tex=2.286x1.143]Px4s+PosevWooBpZPidJvg==[/tex] 中包含一个区间 [tex=4.714x1.357]tvhIRECqPeKjv1eoiArxZA==[/tex].
举一反三
- 试证明下列命题:设 [tex=5.143x1.643]VkIPz+cq7H2f3pBatZY3rtNHuP38I8QKE1fNfIRF3meyipS7JptJVSdLsuV2mlbf[/tex] 且 [tex=7.5x1.571]yApvS3TPe/+BmYN+KyWzUQmLz8ReXnhcT6wTOJ+yNay7Hr5i7QOxcQOOHaovQAVw[/tex], 则对[tex=1.214x1.214]u/EwPhudbQnOqlmqWT4jSQ==[/tex]中可测集 [tex=4.071x1.5]RX2kl70qAOEDARfTl+2xRw==[/tex] 必为可测集.
- 设[tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex]都是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵,命题"若[tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex]都可逆。则[tex=2.286x1.143]Px4s+PosevWooBpZPidJvg==[/tex]也可逆"是否成立?
- 试证明下列命题:设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是 [tex=1.214x1.214]u/EwPhudbQnOqlmqWT4jSQ==[/tex] 上的可测函数, 且[tex=1.214x1.214]u/EwPhudbQnOqlmqWT4jSQ==[/tex]中一个稠密集中的数皆是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的周期,则 [tex=3.357x1.357]OhxXs/wXe53/MGbhvJlqfQ==[/tex](常数),[tex=4.0x1.286]EYZqjowAIHEF+IHLJgiaVWUKVlK1V0I6YL/cqhHZuhw=[/tex].
- 试证明下列命题:设 [tex=6.571x1.571]eSBAw3ddS33i4HOhDJIk60tnbgg5wanIfS1z+algLFp59XqgrjBzC+bAc3mnfm5C[/tex] 是 [tex=1.214x1.214]u/EwPhudbQnOqlmqWT4jSQ==[/tex]上的可测函数. 若对任意的零测集[tex=4.143x1.5]xWRL/LhE42RITd7HH5Z6LQ==[/tex]是可测集,则[tex=2.929x1.357]LywYpFx2ldCQ8Gg2MwlK4g==[/tex]是可测函数.
- 试证明下列命题:设 [tex=1.857x1.357]bR78pKGqeUfu6JsVLQ9H/w==[/tex] 是 [tex=1.214x1.214]u/EwPhudbQnOqlmqWT4jSQ==[/tex] 上非负可测函数,则对任给 [tex=2.357x1.071]/A+5vwsEJRNKGtznoqfPMw==[/tex], 存在 [tex=1.214x1.214]u/EwPhudbQnOqlmqWT4jSQ==[/tex] 上非负可测函数 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex], 使得[tex=5.286x1.357]1AOJwxHXAFNTGhZo8miacCJAGeaIqNjtyvhnuhZ4pZA=[/tex].