证明 [tex=1.429x1.429]Ev/oS/FHbs11jzbcJcjkAA==[/tex] 不是有理数.
举一反三
- 在命题逻辑自然推理系统 [tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex]中构造下面推理的证明.[br][/br][tex=1.429x1.429]4tia4Fmh8qvcSxImPIjBeg==[/tex]是有理数或无理数.若 [tex=1.429x1.429]4tia4Fmh8qvcSxImPIjBeg==[/tex] 是有理数,则 2 能整除 3 . 若 [tex=1.429x1.429]4tia4Fmh8qvcSxImPIjBeg==[/tex]是无理数,则[tex=1.429x1.429]/9IoObNMjyYNGHUA+4tngQ==[/tex] 也是无理数.而 2 不 能整除 3.所以,[tex=1.429x1.429]4tia4Fmh8qvcSxImPIjBeg==[/tex]和 [tex=1.429x1.429]/9IoObNMjyYNGHUA+4tngQ==[/tex]都是无理数.
- 设[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]为正整数,证明:若[tex=0.571x1.286]QPadlhZ3vYN/Hi29gpTrFw==[/tex]不是完全平方数,则[tex=1.429x1.429]P01q+HxNLSMgsFoiWe1Xbg==[/tex]为无理数。[br][/br]
- 证明[tex=1.429x1.429]Quj2jCsGbAgCIZI9kP93BQ==[/tex]是无理数.
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次有理系数多项式, 若 [tex=2.5x1.071]UmcDBu0nDM7wGDdKxgvEEg==[/tex], 求证: [tex=1.429x1.429]CHT4LSgbMdocanZXSUSLsA==[/tex] 必不是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的根.
- 证明:有理系数多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在有理数域上不可约的充要条件是,对任意自然数[tex=2.429x1.214]whrA0fswgExqGZH3sbR6mw==[/tex]和[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex],多项式[tex=7.214x1.357]F6KQ2rAlES9L/e3AyywntQ==[/tex]在有理数域上不可约.