证明:可逆变换是双射. 设[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]为可逆变换,即有可逆变换[tex=1.786x1.214]umkzA/lGqaggQDM+nhhh09myJYRUu5/6pEAdVHfe+CM=[/tex]使[tex=2.571x1.214]LWkxwTYD48E4tDCt0RyhtYBcWtJpQyTduF1EE2VRCUU=[/tex][tex=0.786x0.643]NhuTNiqjImitwKaHFutGOg==[/tex][tex=3.929x1.214]umkzA/lGqaggQDM+nhhh07H/+5I1WpXNDVJblzSP5Wt8zOi8EQ1Ya3jxpWR9hlqE[/tex]
举一反三
- 设[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]是线性空间 [tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的可逆线性变换. 证明:[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]的特征值一定不为 0
- 设h为X上函数,证明下列两个条件等价,(1)h为一单射(2)对任意X上的函数[tex=5.429x1.214]3BrfPgAFe5dbHQTMAYnbS+118W4YAj6CiW06EKMaxNI=[/tex]蕴涵[tex=1.786x1.214]pxzkG5OdsKT9CiCwC5OvPQ==[/tex]
- 设h为X上的函数,证明下列两个条件等价。(1)h为一满射,(2)对任意X上的函数[tex=5.429x1.214]OREhy0bsXZWZ6y8PdI7nwHYlaKprN6KYnR/FCpmEbdk=[/tex]蕴涵[tex=1.786x1.214]pxzkG5OdsKT9CiCwC5OvPQ==[/tex]
- 若在仿射变换[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex] 下一条直线的象与其自身重合, 则称这条直线为[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex] 的不变直线. 求下述仿射变换的不变直线:[tex=7.786x3.357]GE56u9QCDTqcLxZ66HADyluO9vFS2xRx4ZwY/EdzUnJ9tmmI9dy+VSzk+pdlx3mqUxko5MU7XH0ADmDU+R/coZIyHZbBLzv9RyL0Tg1UJ72tnm2SR7RytSMTzW8Z2vzx[/tex]
- 求下列线性变换在所指定基下的矩阵在空间[tex=2.571x1.357]vGE1SyexYI3b62kxHHRgaGihCsBgNhKfHoaQTgTBrVo=[/tex]中 设变换[tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex] 为[tex=8.857x1.357]KPNcgolBTDI6KUqdO1HC80qmaDAQ8xyrwV1dHDotkQI=[/tex]求 [tex=0.857x1.0]xs/zPwdLSSAmQIIfXPkuWQ==[/tex]在基[tex=20.929x2.429]ze0fzInK9G7vpB5RWMMWnlHM3sIrhG4RRy2Y/uX9qmUc42RfYoUg7kQgV7DBbOqirzQ/3mbjQvGPvBChralMUG+bDxJ7HQsWd9yraz3AqbzE+LM0cg5AYQp6SBFsy1WDBiBWPH4UPE8fSS51oNyo0w==[/tex]下的矩阵