证明有限区间[tex=2.214x1.357]64K7dNQOvQBam/0oBbondA==[/tex]不能表成有限个两两不相交的闭集之并。
举一反三
- 证明: 若函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在有限的区间[tex=2.214x1.357]64K7dNQOvQBam/0oBbondA==[/tex]内可微,但无界,则其导数[tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex]在区间[tex=2.214x1.357]64K7dNQOvQBam/0oBbondA==[/tex]内也无界.逆定理不真(举出例子).
- 设函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在有限的或无穷的区间[tex=2.214x1.357]64K7dNQOvQBam/0oBbondA==[/tex]中的任意- -点有有限的导数[tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex]且[tex=9.643x1.929]MhC0sa4kP8ihnFHLNuEHS338yCKfIj+LZHlCZFepfvBDAFGARVhF2tcql7MsapTsIIb5hjRNKK0d0NAbMyqDEQ==[/tex]证明[tex=3.357x1.429]fc/C420zB9MrbM3hJ3ScPg==[/tex]其中c为区间[tex=2.214x1.357]64K7dNQOvQBam/0oBbondA==[/tex]中的某点.
- 设随机变量 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 服从区间 [tex=2.214x1.357]64K7dNQOvQBam/0oBbondA==[/tex] 上的均匀分布,证明 [tex=8.0x1.286]Hg5nQmvXTP8kFy015xMBOi285uAKjnYX7o1OISKyRBQ=[/tex] 仍服从均匀分布.
- 证明 :若函数[tex=3.786x1.357]UvhdVkag8301tqptZS9pSnTEzUw1hXvnrVsqGMpf3EM=[/tex]在闭 区间[tex=2.0x1.357]bawv/j+LZ1l+o4ciN/29dA==[/tex]上是连续的; (2)在此区间内有有限的导数[tex=2.5x1.429]h1oRERik5iMM24jtwqaN8w==[/tex](3)不是线性函数,则在区间[tex=2.214x1.357]64K7dNQOvQBam/0oBbondA==[/tex]内至少能找到一点c,使得[tex=9.143x2.786]wBItcjJDvNNHOcWxpgmCvw19lCqlzpiCYlSJ89399sOnUrWYhH+JS0rtDjKN6gx1uKkphh9SJt1GuhM4bovdPA==[/tex]给出这个事实的几何解释.
- 试证明下列命题:开区间[tex=2.071x1.357]BBsQyjaNPR/OoqeFMMndcw==[/tex]不能表示成互不相交的闭集列之并.