与方程组[img=178x71]180326360dd53c1.png[/img]等价的向量方程为?
A: [img=268x63]1803263618ad3d6.png[/img]
B: [img=252x63]18032636222100e.png[/img]
C: [img=268x63]180326362cd5ee7.png[/img]
D: 7 \end{pmatrix}x_2+\begin{pmatrix}5\\5\\7 \end{pmatrix}x_3=\begin{pmatrix}0\\1\\3 \end{pmatrix}[img=268x63]18032636374ddf5.png[/img]
A: [img=268x63]1803263618ad3d6.png[/img]
B: [img=252x63]18032636222100e.png[/img]
C: [img=268x63]180326362cd5ee7.png[/img]
D: 7 \end{pmatrix}x_2+\begin{pmatrix}5\\5\\7 \end{pmatrix}x_3=\begin{pmatrix}0\\1\\3 \end{pmatrix}[img=268x63]18032636374ddf5.png[/img]
举一反三
- 题目09. 在\(\mathbb{R}^2\)中先关于\(y=x\)反射,再平移\([1,1]^T\),再关于\(y=-x\)反射的映射是: A: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} x+1\\ y+1\end{pmatrix}\) B: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} x-1\\ y-1\end{pmatrix}\) C: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} -x+1\\ -y+1\end{pmatrix}\) D: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} -x-1\\ -y-1\end{pmatrix}\)
- 题目08. 在\(\mathbb{R}^2\)中,先平移\([1,1]^T\),再旋转\(\frac{\pi}{3}\),在伸长2倍的映射是: A: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}x+\sqrt{3}y+1-\sqrt{3}\\ \sqrt{3}x-y+1+\sqrt{3}\end{pmatrix}\) B: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}x-\sqrt{3}y+1-\sqrt{3}\\ \sqrt{3}x+y+1+\sqrt{3}\end{pmatrix}\) C: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}\sqrt{3}x+y+1-\sqrt{3}\\ x-\sqrt{3}y+1+\sqrt{3}\end{pmatrix}\) D: \(f\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix} \sqrt{3}x-y+1-\sqrt{3}\\ x+\sqrt{3}y+1+\sqrt{3}\end{pmatrix}\)
- 下列矩阵中是单位矩阵的为( ). A: $\begin{pmatrix}1&1\\1&1\end{pmatrix}$ B: $\begin{pmatrix}1&0\\0&1\end{pmatrix}$ C: $\begin{pmatrix}1&0\\0&0\end{pmatrix}$ D: $\begin{pmatrix}0&1\\1&0\end{pmatrix}$
- 以下 ____ 不在\(C(A^T)\)中 A: \(\begin{pmatrix}1&2&-6&3\end{pmatrix}^T\) B: \(\begin{pmatrix}1&-2&3&-2\end{pmatrix}^T\) C: \(\begin{pmatrix}1&1&2&-1\end{pmatrix}^T\) D: \(\begin{pmatrix}1&-1&-1&1\end{pmatrix}^T\)
- 令\(F_n = \{次数小于n的多项式全体\}\).\(T:F_3 \to F_3\)定义为\(T(f) = f'\)是微分映射.在基\(\{1,x,x^2\}\)下,\(T\)对应的矩阵为____. A: \(\begin{pmatrix}0&0&0\\1&0&0\\0&2&0\end{pmatrix}\) B: \(\begin{pmatrix}0&0&0\\1&0&0\\0&1&0\end{pmatrix}\) C: \(\begin{pmatrix}0&1&0\\0&0&1\\0&0&0\end{pmatrix}\) D: \(\begin{pmatrix}0&1&0\\0&0&2\\0&0&0\end{pmatrix}\)