设[tex=4.5x1.071]btQ9pX3fFnWN03lyZWUa+g==[/tex]是[tex=1.0x1.0]GqOMsRKoSA9JSFw5lv/vpw==[/tex]阶循环群.[br][/br]求出[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的所有子群.
举一反三
- 设[tex=4.5x1.071]btQ9pX3fFnWN03lyZWUa+g==[/tex]为[tex=1.0x1.0]vtBa9L8pY2+8e14UyeHssw==[/tex]阶循环群,则[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的[tex=0.5x1.0]2IRxdDa5OUp8cccgqlpdUA==[/tex]阶子群是[input=type:blank,size:6][/input].
- 如果有限群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的每个极大子群都是单群且都在[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中正规, 则[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]只能是[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]阶群, 或[tex=0.929x1.429]Oe1sITdLfgoJMrP2LLsThA==[/tex]阶群, 或[tex=1.0x1.0]I5Z2flVFjMnDwqtQo3l5FQ==[/tex]阶循环群, [tex=1.429x1.0]oXDZBpqHCK0AEtZ4kgbZLQ==[/tex]是不同的素数.
- 真子群[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]称为群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的极大子群,如果不存在[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的子群[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex],使得[tex=5.214x1.071]GXs9Ml7t4ZqYgZH/R2m5cg==[/tex].确定无限循环群的全部极大子群.
- 设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶有限群,试证:若对[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的每一个因子[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex],[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中至多只有一个[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]阶子群,则[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是循环群.
- 设[tex=0.857x1.0]h610M+sGyf59WggKwaDo1Q==[/tex]是包含在群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的中心内的一个子群. 证明 : 当[tex=2.143x1.357]AgjHffxzQb9fKjeZTf8lUg==[/tex]是循环群时,[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是交换群.