举一反三
- 令[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]和[tex=0.571x1.0]TcM6B5Wrs5vy9dWrxRPSdg==[/tex]为正整数。不超过[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的正整数中有多少个能被[tex=0.571x1.0]TcM6B5Wrs5vy9dWrxRPSdg==[/tex]整除?
- 写出下面表达式运算后[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex]的值,设原来[tex=2.357x1.0]u06X+wYz5S5h0He5lLg0hQ==[/tex]。设[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]和[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]都已定义为整型变量。[tex=6.5x1.286]lM0LvxCPDnmhUvv9xmJKzfE4k5W0XMA3CQ2l86Qcc6Q=[/tex],[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的值等于 5
- 设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶有限群,试证:若对[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的每一个因子[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex],[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中至多只有一个[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]阶子群,则[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是循环群.
- 证明Euler定理:若[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是正整数, [tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]是与[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]互素的整数,则[tex=7.786x1.571]ce4aKIu9pHkSvXKFvVcfNOHqgh5zS0nNv2n4aOwxc08=[/tex],其中[tex=2.071x1.357]Q3CGpDoBA3UwvlngA8cIKQ==[/tex]是Euler函数,即[tex=2.071x1.357]Q3CGpDoBA3UwvlngA8cIKQ==[/tex]是与[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]互素的不超过[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的正整数的个数.特别地,若[tex=0.571x1.0]QcnBkHbntawstmyl7KNMng==[/tex]是素数,则得到Fermat小定理:[tex=9.571x1.357]Y/31J0hc9a+5psX24upYCFSIeVfdzK03heOLofcmTZKmb0bgJY4PHbSBfj2fYuvYS6sPm4L9LmIJvnb3w1q1Qg==[/tex].
- 证明如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数,则存在唯一的整数[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]使得[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是[tex=1.857x1.143]e5w+BNfKI9xFH5nCChNqEw==[/tex]和[tex=2.286x1.143]6W89R+WvL61VovDfCOzxwQ==[/tex]之和。
内容
- 0
设[tex=2.286x1.357]zvpz/P2YQE8rh2UGIKI1mMkF3fyUMgc+RLH+3Gg4E4Y=[/tex]是有限交换群,[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]是[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]阶元,[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]是[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶元,且[tex=6.357x1.357]WfgDpbATLOAx7vmNqPsFSg==[/tex],则[tex=1.714x1.0]GBiT9n2MnR8I3BQcj7rwKA==[/tex]的阶为[tex=2.214x0.786]PxpPOorBJtvDuSopX679og==[/tex]。
- 1
一整数[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]等可能地在1,2,3 ,…,10十个值中取一个值,设[tex=3.214x1.357]0hvC0E4nGy+/SPopeLwjMQ==[/tex]是能整除[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的正整数的个数,[tex=3.5x1.357]0V2IVll7sEx2dT3CVemeJw==[/tex]是能整除[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的素数的个数(注意:1不是素数).试写出[tex=0.571x1.0]TcM6B5Wrs5vy9dWrxRPSdg==[/tex]和[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]的联合分布律.
- 2
设[tex=2.0x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]均为[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶方阵,[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]为[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶单位阵,证明:若[tex=4.643x1.143]y+ElwUeCSdEkIPEcPLq9sg==[/tex],则[tex=2.286x1.143]hDwbx8oDu+irvDmY8tXjKg==[/tex]可逆。
- 3
设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵,满足[tex=3.571x1.143]KI4+kT+jSz24vWLs5qUVCfiWln2IySIv5TOUPEaWufY=[/tex]([tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶单位矩阵).[tex=3.143x1.357]NGkxbVuCvHHgvepAfNk63A==[/tex],求[tex=3.0x1.357]JIjNa1KhoPNiAPNbrScB7A==[/tex]
- 4
求数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次多项式[tex=12.286x1.5]s7p0rTN6joblHcegHwNHkMVdUUnorocRZIOJxxBQwRrkSVjVRCs7wdGD5ZaHPcvB[/tex],使得它的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个复根的[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]次幂的和等于0,其中[tex=3.214x1.143]50aB1GEaWNwSwkPtFQSAcu//eLl1yrK/BTsRvxIIlnY=[/tex]。