【填空题】用LU分解法解下列方程组: (1)将A分解为L和U的乘积,A=LU, 则 u 11 = 【 1 】 u 12 = 【 2 】 u 13 = 【 3 】 l 21 = 【 4 】 u 22 = 【 6 】 u 23 = 【 7 】 l 31 = 【 5 】 l 32 = 【 8 】 u 33 = 【 9 】 然后用LY=b求出y y 1 = 【 10 】 y 2 = 【 11 】 y 3 = 【 12 】 再用Ux=y求出x,得到 x 1 = 【 13 】 x 2 = 【 14 】 x 3 = 【 15 】
【填空题】用LU分解法解下列方程组: (1)将A分解为L和U的乘积,A=LU, 则 u 11 = 【 1 】 u 12 = 【 2 】 u 13 = 【 3 】 l 21 = 【 4 】 u 22 = 【 6 】 u 23 = 【 7 】 l 31 = 【 5 】 l 32 = 【 8 】 u 33 = 【 9 】 然后用LY=b求出y y 1 = 【 10 】 y 2 = 【 11 】 y 3 = 【 12 】 再用Ux=y求出x,得到 x 1 = 【 13 】 x 2 = 【 14 】 x 3 = 【 15 】
设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)
设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)
图示电路中,利用结点电压法列写方程和解得电压u为( )。[img=188x95]17da6b16678d391.png[/img] A: (1+1/2+1/3)u=-3+3/2;-1 B: (1+1/2)u=-3+3/2;u=-9/11 C: (1+1/2)u=-3+3/2;u=-1 D: (1+1/2+1/3)u=-3+3/2;u=-9/11
图示电路中,利用结点电压法列写方程和解得电压u为( )。[img=188x95]17da6b16678d391.png[/img] A: (1+1/2+1/3)u=-3+3/2;-1 B: (1+1/2)u=-3+3/2;u=-9/11 C: (1+1/2)u=-3+3/2;u=-1 D: (1+1/2+1/3)u=-3+3/2;u=-9/11
双曲线x^2/16-y^2/9=1的渐近线方程为() A: y=±16x/9 B: y=±9x/16 C: x/3±y/4=0 D: x/4±y/3=0
双曲线x^2/16-y^2/9=1的渐近线方程为() A: y=±16x/9 B: y=±9x/16 C: x/3±y/4=0 D: x/4±y/3=0
设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)
设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)
下列等式中有一个差分方程,它是() A: -3Δy=3y+a B: 2Δy=y+x C: Δy=y-2y+y D: Δ(u,v)=uΔv+vΔu
下列等式中有一个差分方程,它是() A: -3Δy=3y+a B: 2Δy=y+x C: Δy=y-2y+y D: Δ(u,v)=uΔv+vΔu
以点\( (2, - 1,2) \)求球心,3为半径的球面方程为( ) A: \( {(x + 2)^2} + {(y - 1)^2} + {(z + 2)^2} = 9 \) B: \( {(x + 2)^2} + {(y - 1)^2} + {(z + 2)^2} = 3 \) C: \( {(x - 2)^2} + {(y + 1)^2} + {(z - 2)^2} = 9 \) D: \( {(x - 2)^2} + {(y + 1)^2} + {(z - 2)^2} = 3 \)
以点\( (2, - 1,2) \)求球心,3为半径的球面方程为( ) A: \( {(x + 2)^2} + {(y - 1)^2} + {(z + 2)^2} = 9 \) B: \( {(x + 2)^2} + {(y - 1)^2} + {(z + 2)^2} = 3 \) C: \( {(x - 2)^2} + {(y + 1)^2} + {(z - 2)^2} = 9 \) D: \( {(x - 2)^2} + {(y + 1)^2} + {(z - 2)^2} = 3 \)
函数 $y=\sin^3x$ 的复合过程为 ( ). A: $ y=\sin u, u=x^3$ B: $y=u^3, u=\sin x$
函数 $y=\sin^3x$ 的复合过程为 ( ). A: $ y=\sin u, u=x^3$ B: $y=u^3, u=\sin x$
求解偏微分方程[img=178x28]18030731a73d552.png[/img], 应用的语句是 A: DSolve[(x^2+y^2)D[u,x]+x yD[u,y]==0,u,{x,y}] B: DSolve[(x^2+y^2)Dt[u[x,y],x]+xyDt[u[x,y],y]==0,u[x,y],{x,y}] C: DSolve[(x^2+y^2)D[u[x,y],x]+xyD[u[x,y],y]==0,u[x,y]] D: DSolve[(x^2+y^2)D[u[x,y],x]+xyD[u[x,y],y]==0,u[x,y],{x,y}]
求解偏微分方程[img=178x28]18030731a73d552.png[/img], 应用的语句是 A: DSolve[(x^2+y^2)D[u,x]+x yD[u,y]==0,u,{x,y}] B: DSolve[(x^2+y^2)Dt[u[x,y],x]+xyDt[u[x,y],y]==0,u[x,y],{x,y}] C: DSolve[(x^2+y^2)D[u[x,y],x]+xyD[u[x,y],y]==0,u[x,y]] D: DSolve[(x^2+y^2)D[u[x,y],x]+xyD[u[x,y],y]==0,u[x,y],{x,y}]
函数 $y=\cos^3(2x+1)$ 的复合过程为 ( ). A: $y=\cos u, u=v^3, v=2x+1$ B: $y=u^3, u=\cos v, v=2x+1$
函数 $y=\cos^3(2x+1)$ 的复合过程为 ( ). A: $y=\cos u, u=v^3, v=2x+1$ B: $y=u^3, u=\cos v, v=2x+1$