两柱面\( {x^2} + {y^2} = {R^2} \) ,\( {x^2} + {z^2} = {R^2} \) 所围立体体积为( ) A: \( 8{R^2} \) B: \( 10{R^2} \) C: \( 12{R^2} \) D: \( 16{R^2} \)
两柱面\( {x^2} + {y^2} = {R^2} \) ,\( {x^2} + {z^2} = {R^2} \) 所围立体体积为( ) A: \( 8{R^2} \) B: \( 10{R^2} \) C: \( 12{R^2} \) D: \( 16{R^2} \)
底圆半径相等的两个直交圆柱面\({x^2} + {y^2} = {R^2}\) 及\({x^2} + {z^2} = {R^2}\) 所围成的立体的表面积为( ) A: \(16{R^2}\) B: \(16{R^3}\) C: \(16{R}\) D: \(16{R^4}\)
底圆半径相等的两个直交圆柱面\({x^2} + {y^2} = {R^2}\) 及\({x^2} + {z^2} = {R^2}\) 所围成的立体的表面积为( ) A: \(16{R^2}\) B: \(16{R^3}\) C: \(16{R}\) D: \(16{R^4}\)
设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, xÎR}, B = {x | 0≤x < 2, xÎR},则A-B = ____;B-A = , A∩B =
设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, xÎR}, B = {x | 0≤x < 2, xÎR},则A-B = ____;B-A = , A∩B =
设全集为R,集合A={x|(3-x)≥-2},B={x|},求?R(A∩B).
设全集为R,集合A={x|(3-x)≥-2},B={x|},求?R(A∩B).
$ 对于以下函数:(R为实数集合,N为自然数集合)是双射的函数有: $ A: $ f: R \to R,f(x)=x^2-x$ B: $ f: R \to R,f(x)=x^3$ C: $ f: N \to N,f(x)=x+5$ D: $ f: R \to R^+,f(x)=2^x,R^+=\{x|x \in R,且 x > 0\}$
$ 对于以下函数:(R为实数集合,N为自然数集合)是双射的函数有: $ A: $ f: R \to R,f(x)=x^2-x$ B: $ f: R \to R,f(x)=x^3$ C: $ f: N \to N,f(x)=x+5$ D: $ f: R \to R^+,f(x)=2^x,R^+=\{x|x \in R,且 x > 0\}$
设R为实数集,函数f:R→R,f(x)=2的x幂,则f是( )
设R为实数集,函数f:R→R,f(x)=2的x幂,则f是( )
y=arcsin(4x+1)的反函数为 A: y=(sinx-1)/4, x∈R B: y=sin[(x-1)/4], x∈R C: y=sin[(x-1)/4], x∈[-π/2,π/2] D: y=(sinx-1)/4, x∈[-π/2,π/2]
y=arcsin(4x+1)的反函数为 A: y=(sinx-1)/4, x∈R B: y=sin[(x-1)/4], x∈R C: y=sin[(x-1)/4], x∈[-π/2,π/2] D: y=(sinx-1)/4, x∈[-π/2,π/2]
设方程\({x^2} + {y^2} + {z^2} = 2Rx\)确定函数\(z=z(x,y)\),则\( { { \partial z} \over {\partial x}}=\) A: \( { { \partial z} \over {\partial x}} = { { R +x} \over z}\) B: \( { { \partial z} \over {\partial x}} =- { { R +x} \over z}\) C: \( { { \partial z} \over {\partial x}} = { { R - x} \over z}\) D: \( { { \partial z} \over {\partial x}} =- { { R - x} \over z}\)
设方程\({x^2} + {y^2} + {z^2} = 2Rx\)确定函数\(z=z(x,y)\),则\( { { \partial z} \over {\partial x}}=\) A: \( { { \partial z} \over {\partial x}} = { { R +x} \over z}\) B: \( { { \partial z} \over {\partial x}} =- { { R +x} \over z}\) C: \( { { \partial z} \over {\partial x}} = { { R - x} \over z}\) D: \( { { \partial z} \over {\partial x}} =- { { R - x} \over z}\)
A={x∈R|0≤x<2}, B={x∈R|1≤x<3}, 则B-A=( )。 A: [2,3] B: [2,3) C: (2,3] D: (2,3)
A={x∈R|0≤x<2}, B={x∈R|1≤x<3}, 则B-A=( )。 A: [2,3] B: [2,3) C: (2,3] D: (2,3)
用谓词逻辑推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。证明:设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数;前提:∀x(Q(x)→R(x)),∃x(Q(x)∧Z(x));结论:∃x(R(x)∧Z(x))。(1)∃x(Q(x)∧Z(x))P(2)Q(c)∧Z(c)ES(1)(3)∀x(Q(x)→R(x))P(4)Q(c)→R(c)US(3)(5)Q(c)T(2)I(6)R(c)T(2)(4)I(7)Z(c)
用谓词逻辑推理证明:有理数都是实数,有的有理数是整数,因此有的实数是整数。证明:设Q(x):x为有理数;R(x):x为实数;Z(x):x为整数;前提:∀x(Q(x)→R(x)),∃x(Q(x)∧Z(x));结论:∃x(R(x)∧Z(x))。(1)∃x(Q(x)∧Z(x))P(2)Q(c)∧Z(c)ES(1)(3)∀x(Q(x)→R(x))P(4)Q(c)→R(c)US(3)(5)Q(c)T(2)I(6)R(c)T(2)(4)I(7)Z(c)