$\int_{0}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{4}}{[\cos (2t)\mathbf{i}+\sin (2t)\mathbf{j}+t\sin t\mathbf{k}]}\operatorname{dt}=$( ) A: $(\frac{1}{2},\frac{1}{2},\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ B: $(1,\frac{1}{2},\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ C: $(\frac{1}{2},1,\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ D: $(1,1,\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$
$\int_{0}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{4}}{[\cos (2t)\mathbf{i}+\sin (2t)\mathbf{j}+t\sin t\mathbf{k}]}\operatorname{dt}=$( ) A: $(\frac{1}{2},\frac{1}{2},\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ B: $(1,\frac{1}{2},\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ C: $(\frac{1}{2},1,\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$ D: $(1,1,\frac{4-\text{ }\!\!\pi\!\!\text{ }}{4\sqrt{2}})$
设平面$Ax+By+Cz+D=0$过$x$轴,则(<br/>) A: $\text{A}=0$, 其他系数不为0 B: $\text{B}=0,\text{C}=0$,其他系数不为0 C: $\text{A}=0,\text{D}=0$,其他系数不为0 D: $\text{D}=0$,其他系数不为0
设平面$Ax+By+Cz+D=0$过$x$轴,则(<br/>) A: $\text{A}=0$, 其他系数不为0 B: $\text{B}=0,\text{C}=0$,其他系数不为0 C: $\text{A}=0,\text{D}=0$,其他系数不为0 D: $\text{D}=0$,其他系数不为0
以下方程不属于齐次方程类型的是( ) A: $\left(1+e^{-\frac{x}{y}}\right)y\text{d}x+(y-x)\text{d}y=0$ B: $x\left(\ln<br/>x-\ln y\right) \text{d}x-y\text{d}y=0$ C: $x<br/>\dfrac{\text{d}y}{\text{d}x}-y+\sqrt{x^2-y^2}=0$ D: $\dfrac{\text{d}y}{\text{d}x}=\dfrac{1+y^2}{xy+x^3y}$
以下方程不属于齐次方程类型的是( ) A: $\left(1+e^{-\frac{x}{y}}\right)y\text{d}x+(y-x)\text{d}y=0$ B: $x\left(\ln<br/>x-\ln y\right) \text{d}x-y\text{d}y=0$ C: $x<br/>\dfrac{\text{d}y}{\text{d}x}-y+\sqrt{x^2-y^2}=0$ D: $\dfrac{\text{d}y}{\text{d}x}=\dfrac{1+y^2}{xy+x^3y}$
已知齐次方程$(x-1){{y}^{''}}-x{{y}^{'}}+y=0$的通解为$Y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}$,则方程$(x-1){{y}^{''}}-x{{y}^{'}}+y={{(x-1)}^{2}}$的通解是( ) A: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{2}}+1)$ B: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{3}}+1)$ C: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}$ D: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}+1$
已知齐次方程$(x-1){{y}^{''}}-x{{y}^{'}}+y=0$的通解为$Y={{C}_{1}}x+{{C}_{2}}{{e}^{x}}$,则方程$(x-1){{y}^{''}}-x{{y}^{'}}+y={{(x-1)}^{2}}$的通解是( ) A: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{2}}+1)$ B: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-({{x}^{3}}+1)$ C: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}$ D: ${{\text{C}}_{1}}x+{{\text{C}}_{2}}{{e}^{x}}-{{x}^{2}}+1$
对数螺线$r={{\text{e}}^{\theta }}$在$\theta =\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$对应点处的切线的直角坐标方程为( )。 A: $y+x={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}$ B: $y-x={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}$ C: $y={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}(x+1)$ D: $y={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}(x-1)$
对数螺线$r={{\text{e}}^{\theta }}$在$\theta =\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$对应点处的切线的直角坐标方程为( )。 A: $y+x={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}$ B: $y-x={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}$ C: $y={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}(x+1)$ D: $y={{\text{e}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{2}}}(x-1)$
函数$y={{\ln }^{3}}{{x}^{2}}$的微分为( )。 A: $\text{d}y=6x{{\ln }^{2}}{{x}^{2}}\ \text{d}x$ B: $\text{d}y=\frac{6}{x}{{\ln }^{2}}{{x}^{2}}\ \text{d}x$ C: $\text{d}y=3{{\ln }^{2}}{{x}^{2}}\ \text{d}x$ D: $\text{d}y=2x{{\ln }^{3}}{{x}^{2}}\ \text{d}x$
函数$y={{\ln }^{3}}{{x}^{2}}$的微分为( )。 A: $\text{d}y=6x{{\ln }^{2}}{{x}^{2}}\ \text{d}x$ B: $\text{d}y=\frac{6}{x}{{\ln }^{2}}{{x}^{2}}\ \text{d}x$ C: $\text{d}y=3{{\ln }^{2}}{{x}^{2}}\ \text{d}x$ D: $\text{d}y=2x{{\ln }^{3}}{{x}^{2}}\ \text{d}x$
从原点向曲线$$y=1-\ln x$$作切线,则由切线、曲线和$$x$$轴围成图形的面积为(). A: $$\frac{1}{2}{{\text{e}}^{2}}+\text{e}$$ B: $$\frac{1}{2}{{\text{e}}^{2}}-\text{e}$$ C: $${{\text{e}}^{2}}+\text{e}$$ D: $${{\text{e}}^{2}}-\text{e}$$
从原点向曲线$$y=1-\ln x$$作切线,则由切线、曲线和$$x$$轴围成图形的面积为(). A: $$\frac{1}{2}{{\text{e}}^{2}}+\text{e}$$ B: $$\frac{1}{2}{{\text{e}}^{2}}-\text{e}$$ C: $${{\text{e}}^{2}}+\text{e}$$ D: $${{\text{e}}^{2}}-\text{e}$$
曲线$x={{\sin }^{2}}t, y=\sin t\cos t, z={{\cos }^{2}}t$在$t=\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$所对应的点处的切向向量为 A: $(0,-1,1)$ B: $(1,-1,0)$ C: $(0,1,1)$ D: $(0,-1,0)$
曲线$x={{\sin }^{2}}t, y=\sin t\cos t, z={{\cos }^{2}}t$在$t=\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$所对应的点处的切向向量为 A: $(0,-1,1)$ B: $(1,-1,0)$ C: $(0,1,1)$ D: $(0,-1,0)$
以下关系式中,正确的是( )。 A: $2\arctan x+\arcsin \frac{2x}{1+{{x}^{2}}}=\text{ }\!\!\pi\!\!\text{ }$,$|x|\ge 1$ B: $\arctan x=\arcsin \frac{x}{\sqrt{1+{{x}^{2}}}}+\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$-\infty \lt x \lt \infty $ C: $\arcsin x+\arccos x=\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$|x|\le 1$ D: $\arcsin x=\arctan \frac{x}{\sqrt{1-{{x}^{2}}}}-\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$|x| \lt 1$
以下关系式中,正确的是( )。 A: $2\arctan x+\arcsin \frac{2x}{1+{{x}^{2}}}=\text{ }\!\!\pi\!\!\text{ }$,$|x|\ge 1$ B: $\arctan x=\arcsin \frac{x}{\sqrt{1+{{x}^{2}}}}+\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$-\infty \lt x \lt \infty $ C: $\arcsin x+\arccos x=\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$|x|\le 1$ D: $\arcsin x=\arctan \frac{x}{\sqrt{1-{{x}^{2}}}}-\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$|x| \lt 1$
<;input type=”()” name=”sex” value=”0” checked>;男<;input type=”()” name=sex value=”2”>;女上面代码,添加了一组单选按钮,用于选择性别。 A: radio,radio B: text,text C: checkbox,checkbox D: radio,text
<;input type=”()” name=”sex” value=”0” checked>;男<;input type=”()” name=sex value=”2”>;女上面代码,添加了一组单选按钮,用于选择性别。 A: radio,radio B: text,text C: checkbox,checkbox D: radio,text