由曲面\( z = {x^2} + {y^2} \) ,\( {x^2} + {y^2} = 4 \) 和\( xOy \) 平面所围立体体积为( ) A: \( 6\pi \) B: \( 7\pi \) C: \( 8\pi \) D: \( 9\pi \)
由曲面\( z = {x^2} + {y^2} \) ,\( {x^2} + {y^2} = 4 \) 和\( xOy \) 平面所围立体体积为( ) A: \( 6\pi \) B: \( 7\pi \) C: \( 8\pi \) D: \( 9\pi \)
函数$f(x)=\sin x + \cos x,x \in [0,2 \pi]$的上凸区间为 A: $[0,\frac{\pi}{4}] \cup [\frac{5}{4} \pi,2 \pi] $ B: $[\frac{\pi}{4},\frac{5}{4} \pi]$ C: $[0,\frac{3}{4}\pi] \cup [\frac{7}{4} \pi,2 \pi] $ D: $[\frac{3}{4} \pi,\frac{7}{4} \pi] $
函数$f(x)=\sin x + \cos x,x \in [0,2 \pi]$的上凸区间为 A: $[0,\frac{\pi}{4}] \cup [\frac{5}{4} \pi,2 \pi] $ B: $[\frac{\pi}{4},\frac{5}{4} \pi]$ C: $[0,\frac{3}{4}\pi] \cup [\frac{7}{4} \pi,2 \pi] $ D: $[\frac{3}{4} \pi,\frac{7}{4} \pi] $
以\( xOy \) 面上的圆周\( {x^2} + {y^2} = ax \) 所围区域为底,曲面\( z = {x^2} + {y^2} \) 为顶的曲顶柱体的体积为( ) A: \( {3 \over {32}}\pi {a^4} \) B: \( {5 \over {32}}\pi {a^4} \) C: \( {7 \over {32}}\pi {a^4} \) D: \( {9 \over {32}}\pi {a^4} \)
以\( xOy \) 面上的圆周\( {x^2} + {y^2} = ax \) 所围区域为底,曲面\( z = {x^2} + {y^2} \) 为顶的曲顶柱体的体积为( ) A: \( {3 \over {32}}\pi {a^4} \) B: \( {5 \over {32}}\pi {a^4} \) C: \( {7 \over {32}}\pi {a^4} \) D: \( {9 \over {32}}\pi {a^4} \)
求定积分[img=208x53]17da65384e03d75.png[/img]; ( ) A: pi/4 - 1/4 B: pi/4 - 1/3 C: pi/4 - 1 D: pi/4 - 1/2
求定积分[img=208x53]17da65384e03d75.png[/img]; ( ) A: pi/4 - 1/4 B: pi/4 - 1/3 C: pi/4 - 1 D: pi/4 - 1/2
-1+i的辐角是多少?() A: \pi/4 B: \pi/2 C: 3\pi/4 D: \pi
-1+i的辐角是多少?() A: \pi/4 B: \pi/2 C: 3\pi/4 D: \pi
求函数[img=173x42]17da65390bf2806.png[/img]的导数; ( ) A: tan(pi/4 + x/2) B: (tan(pi/4 + x/2)^2/2 ) /tan(pi/4 ) C: (tan(pi/4 + x/2)^2/2 + 1/2) D: (tan(pi/4 + x/2)^2/2 + 1/2) /tan(pi/4 + x/2)
求函数[img=173x42]17da65390bf2806.png[/img]的导数; ( ) A: tan(pi/4 + x/2) B: (tan(pi/4 + x/2)^2/2 ) /tan(pi/4 ) C: (tan(pi/4 + x/2)^2/2 + 1/2) D: (tan(pi/4 + x/2)^2/2 + 1/2) /tan(pi/4 + x/2)
下列各组角中,可以作为向量的方向角的是(<br/>) A: $\frac{\pi }{3},\,\frac{\pi }{4},\,\frac{2\pi }{3}$ B: $-\frac{\pi }{3}\,,\frac{\pi }{4}\,,\frac{\pi }{3}$ C: $\frac{\pi }{6},\,\pi ,\,\frac{\pi }{6}$ D: $\frac{2\pi }{3},\,\frac{\pi }{3},\,\frac{\pi }{3}$
下列各组角中,可以作为向量的方向角的是(<br/>) A: $\frac{\pi }{3},\,\frac{\pi }{4},\,\frac{2\pi }{3}$ B: $-\frac{\pi }{3}\,,\frac{\pi }{4}\,,\frac{\pi }{3}$ C: $\frac{\pi }{6},\,\pi ,\,\frac{\pi }{6}$ D: $\frac{2\pi }{3},\,\frac{\pi }{3},\,\frac{\pi }{3}$
时,三个振幅矢量的合矢量等于3A;当$\Delta\varphi$等于 A: $\pi/3$或$2\pi/3$ B: $\pi/3$或$4\pi/3$ C: $2\pi/3$或$4\pi/3$
时,三个振幅矢量的合矢量等于3A;当$\Delta\varphi$等于 A: $\pi/3$或$2\pi/3$ B: $\pi/3$或$4\pi/3$ C: $2\pi/3$或$4\pi/3$
半径为$R$, 密度为$1$的均匀平面薄板关于其切线的转动惯量为 A: $\frac{3\pi R^4}{4}$ B: $\frac{5\pi R^4}{4}$ C: $\frac{5\pi R^3}{4}$ D: $\frac{4\pi R^3}{3}$
半径为$R$, 密度为$1$的均匀平面薄板关于其切线的转动惯量为 A: $\frac{3\pi R^4}{4}$ B: $\frac{5\pi R^4}{4}$ C: $\frac{5\pi R^3}{4}$ D: $\frac{4\pi R^3}{3}$
Solve $ \int_0^{\pi}\cos^9{x}dx=$ :<br/>______
Solve $ \int_0^{\pi}\cos^9{x}dx=$ :<br/>______