设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 为交换群, [tex=3.929x1.357]GrT1Ckri1vTSSUahAGsljQ==[/tex]是一个正整数. 证明: 如果 [tex=2.357x1.357]n8GQc38XvmGZfZ5nwx3wAA==[/tex], 则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 有 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]阶子群.
举一反三
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是交换群,[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 是固定的整数. 令[p=align:center][tex=8.071x1.357]9FZ+vQt6dGIaJjYiB5Gbg3UMXrvnM3rdoD5gcMfpcwPJKxxrBLj1nRLbSSioWh0T[/tex]证明: [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的子群。
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]和[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]分别是阶为[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]和[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的有限循环群, 证明:存在 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]到[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的满同态的充要条件是[tex=1.786x1.357]VqYL4S8BsGk2Huh+On3/WA==[/tex].
- 设群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]只有有限个子群,证明[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]必为有限群。
- 设[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的有限子群, [tex=2.786x1.357]gGafzCAY5HUDydhqr4pyuw==[/tex].假设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]只有一个阶为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的子群, 证明:[tex=0.857x1.0]h610M+sGyf59WggKwaDo1Q==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的正规子群.
- 如果有限群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]有且仅有 3 个不同的子群,则[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 必为循环群,且[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的阶数为[tex=2.357x1.0]jFLnBRxb8B7Hy+eXhKLWag==[/tex] 为某 个素数.