设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]和[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]分别是阶为[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]和[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的有限循环群, 证明:存在 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]到[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的满同态的充要条件是[tex=1.786x1.357]VqYL4S8BsGk2Huh+On3/WA==[/tex].
举一反三
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是有限交换群.证明:[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是循环群的充要条件是,[tex=1.357x1.357]Bii6ZD0BaRML5x2FHhnPeg==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中所有元素的最小公倍数.
- 设[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的有限子群, [tex=2.786x1.357]gGafzCAY5HUDydhqr4pyuw==[/tex].假设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]只有一个阶为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的子群, 证明:[tex=0.857x1.0]h610M+sGyf59WggKwaDo1Q==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的正规子群.
- 设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 为交换群, [tex=3.929x1.357]GrT1Ckri1vTSSUahAGsljQ==[/tex]是一个正整数. 证明: 如果 [tex=2.357x1.357]n8GQc38XvmGZfZ5nwx3wAA==[/tex], 则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 有 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]阶子群.
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是有限群,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的任何真子群都是循环群,试问[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]一定是循环群吗?
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶群且其不同的子群有不同的阶,试证:[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是循环群。