解答下列问题:若 [tex=6.643x1.5]V9mWZcfLDlxj1YqljN7dDsUcZ2Q9lktvcKsp1xt2nhtSz1NYg0Ua5Am6ok0Yr17m[/tex] 是一一映射,则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=1.214x1.214]u/EwPhudbQnOqlmqWT4jSQ==[/tex] 上有无穷多个间断点.
举一反三
- 试证明下列命题:设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是定义在 [tex=1.214x1.214]u/EwPhudbQnOqlmqWT4jSQ==[/tex] 上的可微函数,且[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex] 都是 [tex=1.214x1.214]u/EwPhudbQnOqlmqWT4jSQ==[/tex] 上的可积函数. 则 [tex=6.357x2.643]e+yUMNjQeuJYe6l0ZbTv1Ac8pcZ39z+1PFRGk+eBO/dyNHsguj/HLEgcxVLppISs[/tex].
- 解答下列问题:设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是[tex=1.214x1.214]u/EwPhudbQnOqlmqWT4jSQ==[/tex] 上几乎处处连续的函数,试问是否存在 [tex=4.143x1.571]I3QNz1u0zb92aVDPC4uerk85eYTSYYkMLz9OWYfzVgY=[/tex], 使得 [tex=8.857x1.5]4S8ZjUC9O5UMLmle+7RYz3wJ8ctcrX8zCSviuthYbn29AXa6o87BpKIr92N58Mps[/tex].
- 试证明下列命题:设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是 [tex=1.214x1.214]u/EwPhudbQnOqlmqWT4jSQ==[/tex] 上的可测函数, 且[tex=1.214x1.214]u/EwPhudbQnOqlmqWT4jSQ==[/tex]中一个稠密集中的数皆是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的周期,则 [tex=3.357x1.357]OhxXs/wXe53/MGbhvJlqfQ==[/tex](常数),[tex=4.0x1.286]EYZqjowAIHEF+IHLJgiaVWUKVlK1V0I6YL/cqhHZuhw=[/tex].
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]连续,[tex=7.214x2.643]2ZJQOGzPP+WXkSjEhj0ot/8XbWpx0nNxKCDDSnV56LI=[/tex],试证:(1) 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是奇函数,则[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]是偶函数;(2) 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是偶函数,则[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]是奇函数.
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=4.786x1.357]WafKDm5071vVz9IYJgBhj8LbdrnQF2M50OcMtr5E7Yg=[/tex] 内可导,求证:(1) 若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 为奇函数,则 [tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex] 为偶函数;(2) 若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 为偶函数,则 [tex=2.214x1.429]r3ryU11yfSTbvuAILFSmgH2ollMLH96oAfXGf/TJKyA=[/tex] 为奇函数.