试证明下列命题:(连续函数可微点集的结构)若 [tex=1.857x1.357]bR78pKGqeUfu6JsVLQ9H/w==[/tex] 是 [tex=1.214x1.214]PuEB1Bj96ivjMUdbWZhkKw==[/tex] 上的连续函数,则 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 的可微点集是 [tex=1.357x1.214]1sNgCm5pwaiuNTg8CybE17vVr1kQ6vnewXc18SDhous=[/tex] 集.
举一反三
- 证明可测集 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 上的连续函数[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是可测函数.
- 证明:若[tex=3.357x1.143]E9Jtz0PjQpdGMcr9IFHQhXy1cbNtCnfj0tqXPhUAv0M=[/tex] 是有界闭集, [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 上的连续函数, 则 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 在 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 上一至连续。
- 试证明下列命题:设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上的有界变差且连续的函数. 若对 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 中任一零测集 [tex=0.714x1.0]YEZ006Hwni4CHfhiGo7PZQ==[/tex],有 [tex=4.929x1.357]j3E5K1XnovebABusxSu2QQ==[/tex] (简称为[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]具有零测性,或称 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 具有性质[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex] ),则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex] 上的绝对连续函数.
- 设 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 在有界开集 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]上一致连续。证明:(1) 可将 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 连续延拓到 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 的边界;(2) [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 在 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 上有界。
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=4.0x1.5]o0EugHY/eN16Hz+QLo+BIUiKWbXKuxVC0tSzj7xDCHi+kyFognSyy6B7Ak0bbIxH[/tex]中的有界开集,[tex=3.857x1.214]Tho5m+2VLMUARZGtb7om2ZtLvl+pxnfDP44ZAfSBunI=[/tex]为一致连续的函数,证明:(1)可将[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]连续地延拓到[tex=0.786x1.143]wPwG2U8kBJ7pwP99XAF/rg==[/tex]上;(2)[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上有界。$A$ 上有界.[br][/br]