设f(X)及g(X)在[a,b]上连续(a<b),证明:(1)若在[a,b]上f(x)>=0,且∫f(x)dx=0,则在[a,b]上f(x)恒等于0(2)若在[a,b]上f(x)>=g(x),且∫f(x)dx=∫g(x)dx,则在[a,b]上f(x)恒等于g(x)
设f(X)及g(X)在[a,b]上连续(a<b),证明:(1)若在[a,b]上f(x)>=0,且∫f(x)dx=0,则在[a,b]上f(x)恒等于0(2)若在[a,b]上f(x)>=g(x),且∫f(x)dx=∫g(x)dx,则在[a,b]上f(x)恒等于g(x)
设f(x),g(x)在[a,b]上二阶可导,g""(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:设f(x),g(x)在[a,b]上二阶可导,g""(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:
设f(x),g(x)在[a,b]上二阶可导,g""(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:设f(x),g(x)在[a,b]上二阶可导,g""(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:
2、设f(x)在区间[0,1]上连续,且g(x)在[0,2]上连续,则f(x)+g(x)在[0,2]上连续。
2、设f(x)在区间[0,1]上连续,且g(x)在[0,2]上连续,则f(x)+g(x)在[0,2]上连续。
在区间[-a,a](a>0)内图象不间断的函数f(x)满足f(-x)-f(x)=0,函数g(x)=ex•f(x),且g(0)•g(a)<0,又当0<x<a时,有f′(x)+f(x)>0,则函数f(x)在区间[-a,a]内零点的个数是______.
在区间[-a,a](a>0)内图象不间断的函数f(x)满足f(-x)-f(x)=0,函数g(x)=ex•f(x),且g(0)•g(a)<0,又当0<x<a时,有f′(x)+f(x)>0,则函数f(x)在区间[-a,a]内零点的个数是______.
设f(x)=sinx,g(x)=cosx,则在[0,π/4]上有[]. A: f(x)≥g(x),fˊ(x)>gˊ(x) B: f(x)≥g(x),fˊ(x)<gˊ(x) C: F(X)≤g(x),fˊ(x)>gˊ(x) D: f(x)≤g(x),fˊ(x)<gˊ(x)
设f(x)=sinx,g(x)=cosx,则在[0,π/4]上有[]. A: f(x)≥g(x),fˊ(x)>gˊ(x) B: f(x)≥g(x),fˊ(x)<gˊ(x) C: F(X)≤g(x),fˊ(x)>gˊ(x) D: f(x)≤g(x),fˊ(x)<gˊ(x)
设f(x),g(x)在[a,b]上连续,且f(x)+g(x)≠0,若,则______。
设f(x),g(x)在[a,b]上连续,且f(x)+g(x)≠0,若,则______。
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在[0,1]上( )
设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在[0,1]上( )
设函数$f(x)$具有二阶导数,$g(x)=f(0)(1-x)+f(1)x$,则在区间$[0,1]$上,必有 A: 当$f'(x)\geq 0$时,$f(x)\geq g(x)$. B: 当$f'(x)\geq 0$时,$f(x)\leq g(x)$. C: 当$f''(x)\geq 0$时,$f(x)\geq g(x)$. D: 当$f''(x)\geq 0$时,$f(x)\leq g(x)$.
设函数$f(x)$具有二阶导数,$g(x)=f(0)(1-x)+f(1)x$,则在区间$[0,1]$上,必有 A: 当$f'(x)\geq 0$时,$f(x)\geq g(x)$. B: 当$f'(x)\geq 0$时,$f(x)\leq g(x)$. C: 当$f''(x)\geq 0$时,$f(x)\geq g(x)$. D: 当$f''(x)\geq 0$时,$f(x)\leq g(x)$.
设f(x)及g(x)在[a,b]上连续,证明:若在[a,b]上,f(x)≥0,且。
设f(x)及g(x)在[a,b]上连续,证明:若在[a,b]上,f(x)≥0,且。
设f(x),g(x)是恒不为零的可导函数,且f’(x)g(x)-f(x)g’(x)>0,则当0<x<1时()。 A: f(x)g(x)>f(1)g(1) B: f(x)g(x)>f(0)g(0) C: f(x)g(1)<f(1)g(x) D: f(x)g(0)<f(0)g(x)
设f(x),g(x)是恒不为零的可导函数,且f’(x)g(x)-f(x)g’(x)>0,则当0<x<1时()。 A: f(x)g(x)>f(1)g(1) B: f(x)g(x)>f(0)g(0) C: f(x)g(1)<f(1)g(x) D: f(x)g(0)<f(0)g(x)