设[tex=0.571x1.0]8Zvs4k1E3PJv6bLQN1OWcg==[/tex],[tex=0.5x1.0]BwbMcfFB7+ux6m5GcvMVvA==[/tex]都是素数,[tex=2.286x1.071]bGsEjrC6qqEk3r8qGzYGDQ==[/tex],[tex=3.857x1.357]UjYumzESPMckI7MOGq1vOg==[/tex] ,证明[tex=1.0x1.0]G+ERgoWRxeowbOaR7/sBZg==[/tex]阶群一定是循环群。
举一反三
- 设[tex=0.571x1.0]8Zvs4k1E3PJv6bLQN1OWcg==[/tex],[tex=0.5x1.0]BwbMcfFB7+ux6m5GcvMVvA==[/tex]是素数且[tex=2.286x1.071]bGsEjrC6qqEk3r8qGzYGDQ==[/tex],又群[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是[tex=0.571x1.0]8Zvs4k1E3PJv6bLQN1OWcg==[/tex]阶群,群[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]是[tex=0.5x1.0]BwbMcfFB7+ux6m5GcvMVvA==[/tex]阶群,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]过[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的扩张,试证:[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]一定是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]过[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的非本质扩张。
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是 [tex=1.0x1.0]G+ERgoWRxeowbOaR7/sBZg==[/tex]阶群, 其中 [tex=1.286x1.0]MmizdvsV9y7oTP/uy7jNlQ==[/tex]是素数, [tex=2.286x1.071]KBpGEH+in8vrAnylQdc1GA==[/tex] 且 [tex=3.357x1.357]QE14FycwQigVlVnLcffRzA==[/tex] 证明: [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是循环群.
- 设[tex=0.571x1.0]8Zvs4k1E3PJv6bLQN1OWcg==[/tex],[tex=0.5x1.0]BwbMcfFB7+ux6m5GcvMVvA==[/tex]是素数且[tex=2.286x1.071]bGsEjrC6qqEk3r8qGzYGDQ==[/tex],又群[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是[tex=0.571x1.0]8Zvs4k1E3PJv6bLQN1OWcg==[/tex]阶群,群[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]是[tex=0.5x1.0]BwbMcfFB7+ux6m5GcvMVvA==[/tex]阶群,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]过[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的扩张,试证:如果[tex=5.929x1.357]1uGO9Y4tOl3vBhn+zjHp1DssvQNoLxyI7z6Qgv5ngog=[/tex],则存在[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]过[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的非平凡扩张[tex=0.786x1.0]4swj+MXBfXw/BCBdKDogfg==[/tex],此时[tex=0.786x1.0]4swj+MXBfXw/BCBdKDogfg==[/tex]为非交换群。
- 设 [tex=1.286x1.0]MmizdvsV9y7oTP/uy7jNlQ==[/tex]是不同的素数. 证明: 每一阶数为 [tex=1.0x1.0]G+ERgoWRxeowbOaR7/sBZg==[/tex] 的交换群都是循环群.
- 对素数 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 的不同值, 找出循环群[tex=1.143x1.357]oOz0oH4UpFaaOY7OuGotcg8wtMntQEjCiVorwD1W3R4=[/tex]的所有生成元和所有子群.(1) 7 ; (2) 11 ; (3) 13(4) 17 ; (5) 19 ; (6) 23 .