设$f(x)$是一个$\mathbb{R}$上定义的单调函数,如果$\lim_{x\to\infty}f(x)$存在,那么$f(x)$是有界函数。
举一反三
- 设函数$y=f(x)$在$(0,+\infty)$内有界且可导,则 A: 当$\lim_{x\to+\infty}f(x)=0$时,必有$\lim_{x\to+\infty}f'(x)=0$. B: 当$\lim_{x\to+\infty}f'(x)$存在时,必有$\lim_{x\to+\infty}f'(x)=0$. C: 当$\lim_{x\to 0^+}f(x)=0$时,必有$\lim_{x\to 0^+}f'(x)=0$. D: 当$\lim_{x\to 0^+}f'(x)$存在时,必有$\lim_{x\to 0^+}f'(x)=0$.
- 函数$f(x)=x^2e^{-x^2}$是$\mathbb{R}$上的有界函数。
- 下列函数在指定区间上不一致连续的是哪个? A: 函数$f(x)=x^2$在$(-\infty,+\infty)$上 B: 函数$f(x)=\sin x$在$(\infty,+\infty)$上 C: 函数$f(x)=\sqrt{x}$在$[0,+\infty)$上 D: 函数$f(x)=\cos(\sqrt{x}$在$[0,+\infty)$上
- 设函数f(x)在数集X上有定义,试证:函数f(x)在X上有界的充分必要条件是它在上既有上界又有设函数f(x)在数集X上有定义,试证:函数f(x)在X上有界的充分必要条件是它在上既有上界又有下界,
- 设函数f(x)在数集x上有定义,证明函数f(x)在x上有界的充要条件是它在x上既有上界又有下界