设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)
设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \({e^{xy}}({x}y^2 + {x^3} + 2y)\) B: \({e^{xy}}({x^2}y + {x^3} + 2y)\) C: \({e^{xy}}({x}y^2 + {x^3} + 2x)\) D: \({e^{xy}}({x}y+ {x^3} + 2y)\)
设X~U(a, b), E(X)=3, D(X)=1/3, P{2<X< 3} = ( ). A: 0 B: 1/4 C: 1/3 D: 1/2
设X~U(a, b), E(X)=3, D(X)=1/3, P{2<X< 3} = ( ). A: 0 B: 1/4 C: 1/3 D: 1/2
设随机变量X~U(0,3),则P{1≤X<2}=()。 A: 1/3 B: 2/3 C: 1/4 D: 3/4
设随机变量X~U(0,3),则P{1≤X<2}=()。 A: 1/3 B: 2/3 C: 1/4 D: 3/4
已知集合A={x|-1<x<2},集合B={x|1<x<3},全集U=R
已知集合A={x|-1<x<2},集合B={x|1<x<3},全集U=R
设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)
设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)
3. 下列各对函数$y=f(u), u=g(x)$中, 可以复合成复合函数$y=f(g(x))$的是( ). A: $f(u) = \sqrt {{u^2} + 1} ,\quad g(x) = {{\rm{e}}^x}<br/>$ B: $<br/>f(u) = \arccos (1 + 2u),\quad g(x) = 1 + {x^2}<br/>$ C: $f(u) = \sqrt {u + 1} ,\quad g(x) = \sin x - 3<br/>$ D: $<br/>f(u) = {\ln ^2}u,\quad g(x) = \arcsin x<br/>$
3. 下列各对函数$y=f(u), u=g(x)$中, 可以复合成复合函数$y=f(g(x))$的是( ). A: $f(u) = \sqrt {{u^2} + 1} ,\quad g(x) = {{\rm{e}}^x}<br/>$ B: $<br/>f(u) = \arccos (1 + 2u),\quad g(x) = 1 + {x^2}<br/>$ C: $f(u) = \sqrt {u + 1} ,\quad g(x) = \sin x - 3<br/>$ D: $<br/>f(u) = {\ln ^2}u,\quad g(x) = \arcsin x<br/>$
求解偏微分方程[img=178x28]18030731a73d552.png[/img], 应用的语句是 A: DSolve[(x^2+y^2)D[u,x]+x yD[u,y]==0,u,{x,y}] B: DSolve[(x^2+y^2)Dt[u[x,y],x]+xyDt[u[x,y],y]==0,u[x,y],{x,y}] C: DSolve[(x^2+y^2)D[u[x,y],x]+xyD[u[x,y],y]==0,u[x,y]] D: DSolve[(x^2+y^2)D[u[x,y],x]+xyD[u[x,y],y]==0,u[x,y],{x,y}]
求解偏微分方程[img=178x28]18030731a73d552.png[/img], 应用的语句是 A: DSolve[(x^2+y^2)D[u,x]+x yD[u,y]==0,u,{x,y}] B: DSolve[(x^2+y^2)Dt[u[x,y],x]+xyDt[u[x,y],y]==0,u[x,y],{x,y}] C: DSolve[(x^2+y^2)D[u[x,y],x]+xyD[u[x,y],y]==0,u[x,y]] D: DSolve[(x^2+y^2)D[u[x,y],x]+xyD[u[x,y],y]==0,u[x,y],{x,y}]
【填空题】用LU分解法解下列方程组: (1)将A分解为L和U的乘积,A=LU, 则 u 11 = 【 1 】 u 12 = 【 2 】 u 13 = 【 3 】 l 21 = 【 4 】 u 22 = 【 6 】 u 23 = 【 7 】 l 31 = 【 5 】 l 32 = 【 8 】 u 33 = 【 9 】 然后用LY=b求出y y 1 = 【 10 】 y 2 = 【 11 】 y 3 = 【 12 】 再用Ux=y求出x,得到 x 1 = 【 13 】 x 2 = 【 14 】 x 3 = 【 15 】
【填空题】用LU分解法解下列方程组: (1)将A分解为L和U的乘积,A=LU, 则 u 11 = 【 1 】 u 12 = 【 2 】 u 13 = 【 3 】 l 21 = 【 4 】 u 22 = 【 6 】 u 23 = 【 7 】 l 31 = 【 5 】 l 32 = 【 8 】 u 33 = 【 9 】 然后用LY=b求出y y 1 = 【 10 】 y 2 = 【 11 】 y 3 = 【 12 】 再用Ux=y求出x,得到 x 1 = 【 13 】 x 2 = 【 14 】 x 3 = 【 15 】
在MATLAB的Editor中输入下列语句:x=[13;24];y=norm(x(:,2));z=det(x);u=diag(x);v=polyval(u,1);运行后,在CommandWindow中对应y,z,u,v的输出结果为() A: 4 2 [1;2] 3 B: 4 -2 [1;4] 5 C: 5 2 [1;2] 3 D: 5 -2 [1;4] 5
在MATLAB的Editor中输入下列语句:x=[13;24];y=norm(x(:,2));z=det(x);u=diag(x);v=polyval(u,1);运行后,在CommandWindow中对应y,z,u,v的输出结果为() A: 4 2 [1;2] 3 B: 4 -2 [1;4] 5 C: 5 2 [1;2] 3 D: 5 -2 [1;4] 5
模糊集合表示为A=u1/x1+u2/x2+u3/x3+……,其中u代表隶属度,x表示论域元素,式子中的加号和除法和数学中的表示含义相同。
模糊集合表示为A=u1/x1+u2/x2+u3/x3+……,其中u代表隶属度,x表示论域元素,式子中的加号和除法和数学中的表示含义相同。