Calculate the integral:$\int_2^{+\infty}\frac{dx}{x^2-1}$Which answer is CORRECT? A: $\frac12\ln 3$ B: $\ln 3$ C: $\frac{1}{2}$ D: $\frac{1}{2}\ln x$
Calculate the integral:$\int_2^{+\infty}\frac{dx}{x^2-1}$Which answer is CORRECT? A: $\frac12\ln 3$ B: $\ln 3$ C: $\frac{1}{2}$ D: $\frac{1}{2}\ln x$
(2)、\(X\)的三阶中心矩为 A: \(0\) B: \(\frac{1}{12}\) C: \(\frac{1}{6}\) D: \(\frac{1}{3}\)
(2)、\(X\)的三阶中心矩为 A: \(0\) B: \(\frac{1}{12}\) C: \(\frac{1}{6}\) D: \(\frac{1}{3}\)
连续地掷一枚骰子80次,求点数之和超过300的概率. A: $1-\Phi(\frac{296.5}{\sqrt{35/12}})$ B: $\Phi(\frac{20}{\sqrt{700/3}})$ C: $1-\Phi(\frac{20}{\sqrt{700/3}})$ D: $\Phi(\frac{296.5}{\sqrt{35/12}})$
连续地掷一枚骰子80次,求点数之和超过300的概率. A: $1-\Phi(\frac{296.5}{\sqrt{35/12}})$ B: $\Phi(\frac{20}{\sqrt{700/3}})$ C: $1-\Phi(\frac{20}{\sqrt{700/3}})$ D: $\Phi(\frac{296.5}{\sqrt{35/12}})$
(1). 某人射击直到中靶为止,已知每次射击中靶的概率为0.25。 则射击次数的数学期望与方差分别为 ( )。 A: \(\frac{4}{3}\mbox{ 与 }\frac{4}{9} \) B: \(\frac{4}{3}\mbox{ 与 }12 \) C: \(4\mbox{ 与 }\frac{4}{9} \) D: \( 4\mbox{ 与 }12 \)
(1). 某人射击直到中靶为止,已知每次射击中靶的概率为0.25。 则射击次数的数学期望与方差分别为 ( )。 A: \(\frac{4}{3}\mbox{ 与 }\frac{4}{9} \) B: \(\frac{4}{3}\mbox{ 与 }12 \) C: \(4\mbox{ 与 }\frac{4}{9} \) D: \( 4\mbox{ 与 }12 \)
题目包含多个选项,但学生只能选择一个答案。1、连续地掷一枚骰子80次,求点数之和超过300的概率. A: $1-\Phi(\frac{296.5}{\sqrt{35/12}})$ B: $\Phi(\frac{20}{\sqrt{700/3}})$ C: $1-\Phi(\frac{20}{\sqrt{700/3}})$ D: $\Phi(\frac{296.5}{\sqrt{35/12}})$
题目包含多个选项,但学生只能选择一个答案。1、连续地掷一枚骰子80次,求点数之和超过300的概率. A: $1-\Phi(\frac{296.5}{\sqrt{35/12}})$ B: $\Phi(\frac{20}{\sqrt{700/3}})$ C: $1-\Phi(\frac{20}{\sqrt{700/3}})$ D: $\Phi(\frac{296.5}{\sqrt{35/12}})$
\(已知L是抛物线y=x^2上点O(0,0)与点A(1,1)之间的一段弧,则\int_{L}\sqrt{y}ds=(\,)\) A: \[\frac{1}{12}(5\sqrt{5}-1)\] B: \[\frac{1}{12}(3\sqrt{3}-1)\] C: \[\frac{1}{13}(5\sqrt{5}-1)\] D: \[\frac{1}{13}(3\sqrt{3}-1)\]
\(已知L是抛物线y=x^2上点O(0,0)与点A(1,1)之间的一段弧,则\int_{L}\sqrt{y}ds=(\,)\) A: \[\frac{1}{12}(5\sqrt{5}-1)\] B: \[\frac{1}{12}(3\sqrt{3}-1)\] C: \[\frac{1}{13}(5\sqrt{5}-1)\] D: \[\frac{1}{13}(3\sqrt{3}-1)\]
(3). 设两个相互独立的随机事件 \( A,B \),它们都不发生的概率为 \(<br/>\frac{1}{9} \),\( A \) 发生 \( B \) 不发生的概率与 \( B \) 发生 \(<br/>A \) 不发生的概率相等,则 \( P(A)=\)( )。 A: \(\frac{3}{4}\) B: \(\frac{2}{3}\) C: \(\frac{5}{6}\) D: \(\frac{5}{12}\)
(3). 设两个相互独立的随机事件 \( A,B \),它们都不发生的概率为 \(<br/>\frac{1}{9} \),\( A \) 发生 \( B \) 不发生的概率与 \( B \) 发生 \(<br/>A \) 不发生的概率相等,则 \( P(A)=\)( )。 A: \(\frac{3}{4}\) B: \(\frac{2}{3}\) C: \(\frac{5}{6}\) D: \(\frac{5}{12}\)
2、已知函数$f(x)=-x^{2}+ax-b$,(1)、若$a,b$都是从$0,1,2,3,4$五个数中随机选取的数,求上述函数有零点的概率 A: $\frac{11}{25}$ B: $\frac{12}{25}$ C: $\frac{13}{25}$ D: $\frac{14}{25}$
2、已知函数$f(x)=-x^{2}+ax-b$,(1)、若$a,b$都是从$0,1,2,3,4$五个数中随机选取的数,求上述函数有零点的概率 A: $\frac{11}{25}$ B: $\frac{12}{25}$ C: $\frac{13}{25}$ D: $\frac{14}{25}$
如果把积分区间二等分,利用Simpson's \(\frac{1}{3}\) rule 求得的\(\int_{0}^{16} f(x)dx\)的值是20, 那么把积分区间分成相等的4个区间时,利用Simpson's \(\frac{1}{3}\) rule求得的近似值是多少? ( \(\int_{0}^{16} f(x)dx\)의 부분구간의 개수를 2개로 설정한 Simpson's \(\frac{1}{3}\) rule로 구한 근삿값이 20일때, 부분구간의 개수를 4개로 설정한 Simpson's \(\frac{1}{3}\) rule 로 구한 근삿값을 구하시오) A: 20 + \(\frac{8}{3}\) ( 2f(4) - f(8) + 2f(12) ) B: 10 + \(\frac{8}{3}\) ( 2f(4) - f(8) + 2f(12) ) C: 20 + \(\frac{8}{3}\) ( f(4) - f(8) + 2f(12) ) D: 10 + \(\frac{8}{3}\) ( 2f(4) - 2f(8) + f(12) ) E: 20 + \(\frac{8}{3}\) ( f(4) - f(8) + f(12) )
如果把积分区间二等分,利用Simpson's \(\frac{1}{3}\) rule 求得的\(\int_{0}^{16} f(x)dx\)的值是20, 那么把积分区间分成相等的4个区间时,利用Simpson's \(\frac{1}{3}\) rule求得的近似值是多少? ( \(\int_{0}^{16} f(x)dx\)의 부분구간의 개수를 2개로 설정한 Simpson's \(\frac{1}{3}\) rule로 구한 근삿값이 20일때, 부분구간의 개수를 4개로 설정한 Simpson's \(\frac{1}{3}\) rule 로 구한 근삿값을 구하시오) A: 20 + \(\frac{8}{3}\) ( 2f(4) - f(8) + 2f(12) ) B: 10 + \(\frac{8}{3}\) ( 2f(4) - f(8) + 2f(12) ) C: 20 + \(\frac{8}{3}\) ( f(4) - f(8) + 2f(12) ) D: 10 + \(\frac{8}{3}\) ( 2f(4) - 2f(8) + f(12) ) E: 20 + \(\frac{8}{3}\) ( f(4) - f(8) + f(12) )
下列各组角中,可以作为向量的方向角的是(<br/>) A: $\frac{\pi }{3},\,\frac{\pi }{4},\,\frac{2\pi }{3}$ B: $-\frac{\pi }{3}\,,\frac{\pi }{4}\,,\frac{\pi }{3}$ C: $\frac{\pi }{6},\,\pi ,\,\frac{\pi }{6}$ D: $\frac{2\pi }{3},\,\frac{\pi }{3},\,\frac{\pi }{3}$
下列各组角中,可以作为向量的方向角的是(<br/>) A: $\frac{\pi }{3},\,\frac{\pi }{4},\,\frac{2\pi }{3}$ B: $-\frac{\pi }{3}\,,\frac{\pi }{4}\,,\frac{\pi }{3}$ C: $\frac{\pi }{6},\,\pi ,\,\frac{\pi }{6}$ D: $\frac{2\pi }{3},\,\frac{\pi }{3},\,\frac{\pi }{3}$