• 2022-05-23 问题

    设f(x),g(x)是恒不为零的可导函数,且f’(x)g(x)-f(x)g’(x)>0,则当0<x<1时()。 A: f(x)g(x)>f(1)g(1) B: f(x)g(x)>f(0)g(0) C: f(x)g(1)<f(1)g(x) D: f(x)g(0)<f(0)g(x)

    设f(x),g(x)是恒不为零的可导函数,且f’(x)g(x)-f(x)g’(x)>0,则当0<x<1时()。 A: f(x)g(x)>f(1)g(1) B: f(x)g(x)>f(0)g(0) C: f(x)g(1)<f(1)g(x) D: f(x)g(0)<f(0)g(x)

  • 2022-07-24 问题

    设函数f(x),g(x)具有二阶导数,g(x0)=a,g’(x0)=0,g"(x)<0,则f(g(x))在x0取极大值的一个充分条件是______。 A: f’(a)<0 B: f’(a)>0 C: f"(a)<0 D: f"(a)>0

    设函数f(x),g(x)具有二阶导数,g(x0)=a,g’(x0)=0,g"(x)<0,则f(g(x))在x0取极大值的一个充分条件是______。 A: f’(a)<0 B: f’(a)>0 C: f"(a)<0 D: f"(a)>0

  • 2022-06-29 问题

    已知任意数x满足f(x)为奇函数,g(x)为偶函数,且x>0时,f′(x)>0,g′(x)>0,则x<0时(  ) A: f′(x)>0,g′(x)>0 B: f′(x)>0,g′(x)<0 C: f′(x)<0,g′(x)>0 D: f′(x)<0,g′(x)<0

    已知任意数x满足f(x)为奇函数,g(x)为偶函数,且x>0时,f′(x)>0,g′(x)>0,则x<0时(  ) A: f′(x)>0,g′(x)>0 B: f′(x)>0,g′(x)<0 C: f′(x)<0,g′(x)>0 D: f′(x)<0,g′(x)<0

  • 2022-06-29 问题

    对于定义域为R的偶函数f(x),定义域为R的奇函数g(x),都有(  ) A: f(-x)-f(x)>0 B: g(-x)-g(x)>0 C: g(-x)g(x)≥0 D: f(-x)g(-x)+f(x)g(x)=0

    对于定义域为R的偶函数f(x),定义域为R的奇函数g(x),都有(  ) A: f(-x)-f(x)>0 B: g(-x)-g(x)>0 C: g(-x)g(x)≥0 D: f(-x)g(-x)+f(x)g(x)=0

  • 2021-04-14 问题

    F[x]中,若f(x)g(x)=3,则f(0)g(0)=

    F[x]中,若f(x)g(x)=3,则f(0)g(0)=

  • 2022-07-24 问题

    8. 设函数$f(x),\ \ g(x)$具有二阶导数,且${{g}'}'(x) \lt 0$. 若$g({{x}_{0}})=a$是$g(x)$的极值,则$f(g(x))$在${{x}_{0}}$取极大值的一个充分条件是( )。 A: ${f}'(a) \lt 0$ B: ${f}'(a)>0$ C: ${{f}'}'(a) \lt 0$ D: ${{f}'}'(a)>0$

    8. 设函数$f(x),\ \ g(x)$具有二阶导数,且${{g}'}'(x) \lt 0$. 若$g({{x}_{0}})=a$是$g(x)$的极值,则$f(g(x))$在${{x}_{0}}$取极大值的一个充分条件是( )。 A: ${f}'(a) \lt 0$ B: ${f}'(a)>0$ C: ${{f}'}'(a) \lt 0$ D: ${{f}'}'(a)>0$

  • 2022-06-12 问题

    设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。

    设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。

  • 2022-06-14 问题

    设函数$f(x)$具有二阶导数,$g(x)=f(0)(1-x)+f(1)x$,则在区间$[0,1]$上,必有 A: 当$f'(x)\geq 0$时,$f(x)\geq g(x)$. B: 当$f'(x)\geq 0$时,$f(x)\leq g(x)$. C: 当$f''(x)\geq 0$时,$f(x)\geq g(x)$. D: 当$f''(x)\geq 0$时,$f(x)\leq g(x)$.

    设函数$f(x)$具有二阶导数,$g(x)=f(0)(1-x)+f(1)x$,则在区间$[0,1]$上,必有 A: 当$f'(x)\geq 0$时,$f(x)\geq g(x)$. B: 当$f'(x)\geq 0$时,$f(x)\leq g(x)$. C: 当$f''(x)\geq 0$时,$f(x)\geq g(x)$. D: 当$f''(x)\geq 0$时,$f(x)\leq g(x)$.

  • 2022-06-16 问题

    设函数f(x)和g(x)在区间(a,b)内均可导,且g(x)>0,f’(x)g(x)-f(x)g’(x)<0,则当x∈(a,b)时,有()。 A: f(x)g(a)>f(a)g(x) B: f(x)g(a)<f(a)f(x) C: f(x)g(x)>f(a)g(a) D: f(x)g(x)<f(b)g(b)

    设函数f(x)和g(x)在区间(a,b)内均可导,且g(x)>0,f’(x)g(x)-f(x)g’(x)<0,则当x∈(a,b)时,有()。 A: f(x)g(a)>f(a)g(x) B: f(x)g(a)<f(a)f(x) C: f(x)g(x)>f(a)g(a) D: f(x)g(x)<f(b)g(b)

  • 2022-07-24 问题

    设f(x),g(x)在[a,b]上二阶可导,g""(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:设f(x),g(x)在[a,b]上二阶可导,g""(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:

    设f(x),g(x)在[a,b]上二阶可导,g""(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:设f(x),g(x)在[a,b]上二阶可导,g""(x)≠0,f(a)=f(b)=g(a)=g(b)=0.证明:

  • 1 2 3 4 5 6 7 8 9 10